首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A column, solid phase extraction (SPE), preconcentration method was developed for determination of silver by using alumina coated with 1-((5-nitrofuran-2-yl)methylene)thiosemicarbazide and determination by flame atomic absorption spectrometry. The separation/preconcentration conditions for the quantitative recovery were investigated. At pH 2, the maximum sorption capacity of Ag+ was 7.5?mg?g?1. The linearity was maintained in the concentration range of 0.02–11.0?µg?mL?1 in the final solution or 0.14–1.10?×?104?ng?mL?1 in the original solution for silver. The preconcentration factor of 140 and relative standard deviation of ±1.4% was obtained, under optimum conditions. The limit of detection (LOD) was calculated as 0.112?ng?mL?1, based on 3σbl/m (n?=?8) in the original solutions. The proposed method was successfully applied to the determination trace amounts of silver in the environmental samples such as tea, rice and wheat flour, mint, and real water samples.  相似文献   

2.
A new, simple, fast and reliable solid-phase extraction method has been developed for separation/preconcentration of trace amounts of Pb(II) using dithizone/sodium dodecyl sulfate-immobilized on alumina-coated magnetite nanoparticles, and its determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after eluting with 4.0?mol?L?1 HNO3. Optimal experimental conditions including pH, sample volume, eluent concentration and volume, and co-existing ions have been studied and established. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation of Pb(II) using FAAS technique were 280 (for 560?mL of sample solution), 0.28?ng?mL?1, 1.4?C70?ng?mL?1 and 4.6% (for 10?ng?mL?1, n?=?10), respectively. These analytical parameters using GFAAS technique were 300 (for 600?mL of sample solution), 0.002?ng?mL?1, 0.006?C13.2?ng?mL?1 and 3.1% (for 5?ng?mL?1, n?=?10), respectively. The presented procedure was successfully applied for determination of Pb(II) content in opium, heroin, lipstick, plants and water samples.  相似文献   

3.
A solid‐phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the adsorption of silver on naphthalene modified with dithizone in a column. The adsorbed silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The adsorption conditions including pH, reagent concentration, eluent volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range 10–1000 ng mL?1 of Ag in the initial solution with r = 0.9998. The limit of detection based on 3Sb was 3.9 ng mL?1. The relative standard deviation for ten replicate measurements of 40 and 600 ng mL?1 of Ag was 4.4% and 0.9%, respectively. The method was applied to the determination of silver in mineral, radiology film and wound dressing samples.  相似文献   

4.
Multiwalled carbon nanotubes chemically functionalized with 2-((3-silylpropylimino) methyl) phenol (SPIMP-MWCNT) and successfully applied for the solid phase extraction (SPE) of some metal ions in food samples. The influences of the analytical parameters including pH, amounts of solid phase, eluent conditions (type, volume and concentrations), sample volume and interference of some metal ions on the recoveries of ions Cu2+, Pb2+, Fe2+, Ni2+ and Zn2+ ion were investigated. The metal ions retained on SPIMP-MWCNT was eluted using 6?mL of 4?mol?L?1 HNO3 solution and their content was determined by flame atomic absorption spectrometry (FAAS) with recoveries more than 95% and relative standard deviations (n?=?5) between 2.4–3.4% for both reproducibility and repeatability. The detection limit of this metal ions was between 1.0–2.6?ng?mL?1 (3S b , n?=?10) and their preconcentration factor was 100, while their loading capacity was above 32.9?mg?g?1 of SPIMP-MWCNT. The proposed method was successfully applied for the preconcentration and determination of analytes in different samples.  相似文献   

5.
A solid‐phase extraction (SPE) method has been presented for the selective separation and preconcentration of trace amounts of cadmium using cetyltrimethylammonium bromide (CTAB)‐coated Fe3O4 nanoparticles (NPs). The method is based on the sorption of cadmium as CdI42? complex on the positively charged surface of the CTAB‐coated Fe3O4 NPs. The preconcentrated cadmium is then desorbed from the surface of the sorbent and is determined by flame atomic absorption spectrometry. The influences of the experimental parameters including pH of the solutions, amount of surfactant, iodide concentration, sample volume, eluent type and volume on the recovery of the analyte ions were investigated. Under the optimum conditions by the extraction of 500 mL of aqueous samples, a preconcentration factor of 250 was achieved. The detection limit (3s) was 0.06 μg L?1, and the relative standard deviations at 0.5 and 5 μg L?1 levels of cadmium (n = 10) were 3.2 and 1.9% respectively. The proposed method was successfully applied to the determination of cadmium in water samples. The accuracy was evaluated through the recovery experiments and independent analysis by the graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

6.
We used a simple two-stage tactic to design and synthesize a magnetically separable catalyst (MSC) Ag/Fe3O4 by combining independently synthesized Fe3O4 and Jatropha curcas root functionalized Ag nanoparticles (NPs) at room temperature. The phase composition of Ag/Fe3O4 NCs was revealed by morphological and structural assessment. The derived Ag/Fe3O4 nanocomposites demonstrated outstanding antimicrobial activity against Gram-negative Pseudomonas aeruginosa comparing to Gram-positive Bacillus subtilis which was determined by the agar well diffusion method. This is due to positively charged surface of metal oxide NPs that may bind to cell membrane. Interestingly, Ag–Fe3O4 NCs demonstrated good photocatalytic activity for organic dye degradation. According to a kinetic study, Ag/Fe3O4 MSC removed 99% of Rhodamine B at a rate constant of 1.89 min?1. The photoelectron could perhaps ultimately collide only with dissolved solids in the substrate to form superoxides, which can damage the dye. Notably, the MSCs reusability was tested using magnetic detachment without sacrificing photocatalytic efficiency. This finding represents a significant breakthrough in the domain of wastewater treatment and biomedicine.  相似文献   

7.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

8.
Melanoma is a primary reason of death from skin cancer and associated with high lethality. Photothermal therapy (PTT) has been developed into a powerful cancer treatment technique in recent years. Here, we created a low‐cost and high‐performance PTT agent, Ag@TiO2 NPs, which possesses a high photothermal conversion efficiency of ≈65 % and strong near‐infrared (NIR) absorption about 808 nm. Ag NPs were synthesized using a two‐step method and coated with TiO2 to obtain Ag@TiO2 NPs by a facile sol‐gel method. Because of the oxide, Ag@TiO2 NPs exhibit remarkable high photothermal conversion efficiencies and biocompatibility in vivo and in vitro. Cytotoxicity and therapeutic efficiency of photothermal cytotoxicity of Ag@TiO2 NPs were tested in B16‐F10 cells and C57BL/6J mice. Under light irradiation, the elevated temperature causes cell death in Ag NPs‐treated (100 μg mL?1) cells in vitro (both p<0.01). In the case of subcutaneous melanoma tumor model, Ag@TiO2 NPs (100 μg mL?1) were injected into the tumor and irradiated with a 808 nm laser of 2 W cm?2 for 1 minute. As a consequence, the tumor volume gradually decreased by NIR laser irradiation with only a single treatment. The results demonstrate that Ag@TiO2 NPs are biocompatible and an attractive photothermal agent for cutaneous melanoma by local delivery.  相似文献   

9.
A novel antimicrobial nanohybrid based on near‐infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO–Fe3O4–PEI) is prepared and then loaded with core–shell–shell Au–Ag–Au nanorods to construct the nanohybrid rGO–Fe3O4–Au–Ag–Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic‐separation capability that is attributable to Fe3O4. The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au–Ag–Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL?1 of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×108 cfu mL?1) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm?2) for 10 min. With magnetic separation, 30 μg mL?1 of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.  相似文献   

10.
A simple and sensitive analytical method for the determination of fluoxetine, estrone and selected pesticides and endocrine disruptors has been proposed for wastewater analysis by gas chromatography–mass spectrometry (GC–MS). A switchable solvent was produced with N,N-dimethylbenzylamine by changing its hydrophobic properties by the addition of CO2 for protonation. Sodium hydroxide was added to switch the solubility of the extraction solvent and to allow phase separation in the sample/standard medium. Analytical parameters affecting the extraction outputs such as volume of switchable solvent, concentration and volume of sodium hydroxide, mixing type and period were investigated to improve the extraction recovery of the selected analytes. Under the optimum conditions, limits of detection and limits of quantification for the analytes were calculated in the ranges of 0.16–8.6?ng mL?1 and 0.54–29?ng mL?1, respectively. The developed method was successfully applied to synthetic wastewater and two municipal wastewater samples. None of the selected analytes were detected in the samples. High recovery values demonstrated that the proposed method was reliable and applicable to complex matrices.  相似文献   

11.
Resonance light-scattering (RLS) technique was developed for studying the interaction of silver nanoparticles (Ag NPs) with bisphenol A. A simple and environmentally friendly method was developed to synthesize Ag NPs using cinnamon extract. Synthesized nanoparticles were characterized using various measurement techniques. The synthesized Ag NPs were nearly spherical, with the sizes ranging from 30 to 60 nm. Spectral analysis indicated that the cinnamon extract acted as the reducing and capping agents on the surface of Ag NPs. RLS technique was used as the detection method. Light-scattering properties of the synthesized nanoparticles in the presence or absence of bisphenol A was selected as the detection signal. Under the optimal conditions, the linear dynamic range and RSD were found to be 0.01–10.0 mg L?1 and 2.78% (n?=?3), respectively. A limit of detection of 0.005 mg L?1 was obtained for the determination of bisphenol A. The obtained results showed successful application of the method for the analysis of bisphenol A in real samples.  相似文献   

12.
We report here a facile colorimetric sensor based on the N-acetyl-l-cysteine (NALC)-stabilized Ag nanoparticles (NALC–Ag NPs) for detection of Fe3+ ions in aqueous solution. The Ag NPs with an average diameter of 6.55 ± 1.0 nm are successfully synthesized through a simple method using sodium borohydride as reducing agent and N-acetyl-l-cysteine as protecting ligand. The synthesized silver nanoparticles show a strong surface plasmon resonance (SPR) around 400 nm and the SPR intensity decreases with the increasing of Fe3+ concentration in aqueous solution. Based on the linear relationship between SPR intensity and concentration of Fe3+ ions, the as-synthesized water-soluble silver nanoparticles can be used for the sensitive and selective detection of Fe3+ ions in water with a linear range from 80 nM to 80 μM and a detection limit of 80 nM. On the basis of the experimental results, a new detection mechanism of oxidation–reduction reaction between Ag NPs and Fe3+ ions is proposed, which is different from previously reported mechanisms. Moreover, the NALC–Ag NPs could be applied to the detection of Fe3+ ions in real environmental water samples.  相似文献   

13.
A magnetic composite of silver/iron oxides/carbon nanotubes (Ag/Fe3O4/CNTs) was synthesized and used as an adsorbent for the preconcentration of mercury ions in water solutions at room temperature (25°C) in this study. The silver nanoparticles were supported on the magnetic CNTs. The modification enabled the composite had not only a high adsorption capacity for mercury ions (Hg2+) but also the magnetic isolation properties. A fast, sensitive, and simple method was successfully developed for the preconcentration and determination of trace amount of Hg2+ in water using the synthesized nanocomposite as adsorbent. The mercury concentration was determined by an atomic fluorescence spectrometer (AFS). The experimental conditions such as pH value, extraction temperature, extraction time, sample volume, eluent composition and concentration, sorbent amount, and coexisting ions were investigated for the optimization. A 500 mL of sample volume resulted in a preconcentration factor of 125. When a 200 mL of sample was employed, the limit of detection for Hg2+ was as low as 0.03 ng mL?1with relative standard deviation of 4.4% at 0.1 ng mL?1 (n = 7). The ease of synthesis and separation, the good adsorption capacity, and the satisfactory recovery will possibly make the composite an attractive adsorbent for the preconcentration of ultratrace Hg2+ in waters.  相似文献   

14.
In this study, a practicable and effective analytical method based on solid-phase-extraction and reversed-phase liquid chromatography with fluorescence detection (SPE-LC-FLD) was developed and partially validated for routine analysis of eight FQs in wastewater at the trace level. Different SPE materials, pH conditions and eluents were modified to find an economic and effective SPE conditions. In our work, it is the first time that well-known commercially available SPE sorbent are compared to ‘generic’ cheap SPE sorbent. Aqueous samples (pH 2–3) were extracted using Anpel? MEP cartridges where they were subsequently eluted by 6?mL of 2% formic acid in MeOH. The aqueous extracts were analysed by gradient elution LC-FLD, whose initial mobile phase was composed of ACN and 10?mmol?L?1 tetrabutyl ammonium bromide (4/96, v/v, pH 3). The LODs and LOQs of the wastewater were as low as 0.32–2.12?ng?L?1 and 1.07–7.07?ng?L?1, respectively. The precisions of the overall method (RSD, n?=?3) using wastewater were below 10%. The method was used to quantify FQs in influents and effluents of several typical sewage treatment plants (STPs) in Shanghai. The extraction recoveries of 100?mL influent, 500?mL effluent and 500?mL of river water samples were between 88.6 and 102.6%, 79.2 and 109.2%, 80.0 and 105.5% and 87.4 and 99.4%, respectively. FQs of interest except sarafloxacin were identified in the influents, effluents and river waters with concentrations varying from 0.012–1.163?µg?L?1, 0.003–0.291?µg?L?1, and 0.002–0.040?µg?L?1, respectively. The method can serve as a tool to obtain detailed information on occurrence, behaviour and fate of FQs in the aquatic environment. Occurrence of FQs detected in summer is higher than in spring at STPs, and those detected in the suburban area are less than those in the urban area. Complete removal of FQs is not achieved from the STPs, indicating domestic wastewater and STP discharge is the source of FQs in the surface water.  相似文献   

15.
A novel flow injection procedure has been developed for the determination of gallic acid based on the enhancement function for luminol‐AgNO3‐Ag NPs chemiluminescence (CL) system by gallic acid. The enhancement mechanism was proposed for the reinforcing effect of the gallic acid on the CL system. The UV‐vis absorption spectrum and CL emission spectrum were applied to confirm the mechanism. The method is simple, rapid and sensitive with a detection limit of 5×10?10 g·mL?1 and a linear range of 8.0×10?10–1.0×10?7 g·mL?1. The relative standard deviation (RSD) is 1.3% for eleven measurements of 5×10?8 g·mL?1 gallic acid. The method has been successfully applied to the determination of gallic acid in Chinese proprietary medicine–Jianmin Yanhou tablets and synthesized samples.  相似文献   

16.
We report on a fluorometric method for the determination of the fluoroquinolones levofloxacin (LEV) and moxifloxacin (MOXI). It is based on the Tb(III)-sensitized luminescence that is plasmonically enhanced by silver nanoparticles (Ag NPs). The emission of the Tb(III) complexes has maximum at 545?nm after excitation at 284?nm and is strongly enhanced in the presence of the colloidal Ag NPs. Under optimum experimental conditions, luminescence intensity increases linearly with the concentration in the range from 4.16?×?10-17-3.59?×?10-15?M of LEV, and from 4.98?×?10-17-2.49?×?10-15?M for MOXI with correlation coefficients of 0.9996 and 0.9996, respectively. The limits of detection are 7.19?×?10-18?M and 8.47?×?10-18?M, respectively, and the relative standard deviations are 1.3 and 1.5% for 5 replicate measurements at 6.08?×?10-14?M of LEV and 5.48?×?10-14?M of MOXI. The method was successfully applied to the determination of LEV and MOXI in pharmaceutical samples, in urine and in serum.
Figure
A new luminescent terbium(III)-fluoroquinolones (FQs) framework with silver nanoparticles exhibits a highly sensitive fluorescent response towards Tb3+ ion. The luminescence intensity of the framework was enhanced significantly by Ag NPs with the concentration of FQs which showed a good linear relationship and detection limit.  相似文献   

17.
We report on a new method for preconcentration of silver ion at trace level in environmental samples, and its subsequent determination by flame atomic absorption spectrometry (FAAS). The room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafuorophosphate and the chelator 5-(4-dimethylaminobenzylidene)-rhodanine were used for extraction. Ag(I) was back-extracted from the organic phase into thiosulfate solution and then determined via FAAS. The effects of pH, concentration of chelating agent, extraction time and temperature, amounts of ionic liquid, ionic strength and potentially interfering ions were studied. Under optimized conditions, the enhancement factor is 30 was achieved. The detection limit (3???) is 0.28?ng?mL?1, and the relative standard deviation is 4.1% for 7 replicate determinations at 5?ng?mL?1 of Ag(I). The method was validated by analysis of certified reference materials and applied to the determination of Ag(I) in environmental samples with satisfactory results.
Graphical abstract
Silver ions at trace level in environmental samples were chelated by 5-(4-dimethylaminobenzylidene)-rhodanine and preconcentrated by room temperature ionic liquid. After back-extraction, silver was determined by flame atomic absorption spectrometry sensitively.  相似文献   

18.
We have immobilized iminodiacetic acid on mesoporous Fe3O4@SiO2 microspheres and used this material for efficient and cost effective method of magnetic solid phase extraction (SPE) of trace levels of Cd, Mn and Pb. The microspheres were characterized by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The loaded microspheres can be easily separated from the aqueous sample solution by applying an external magnetic field. The effects of pH, sample volume, concentration and volume of eluent, and of interfering ions were investigated in detail. The method has detection limit of 0.16, 0.26 and 0.26?ng?L?1 for the ions of Cd, Mn and Pb, respectively, and the relative standard deviations (RSDs, c?=?1???g?L?1, n?=?7) are 4.8%, 4.6% and 7.4%. The method was successfully applied to the determination of these metals in biological and environmental samples using ICP-MS. Two certified reference materials were analyzed, and the results coincided well with the certified values.
Figure
Mesoporous Fe3O4@SiO2@IDA magnetic particles for fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb from environmental and biological samples followed by inductively coupled plasma mass spectrometry detection.  相似文献   

19.
An ethanol biosensor based on alcohol dehydrogenase (ADH) attached to Au seeds decorated on magnetic nanoparticles (Fe3O4@Au NPs) is presented. ADH was immobilized on Fe3O4@Au NPs, which were subsequently fixed by a magnet on a carbon paste electrode modified with 5 % (m : m) MnO2. Optimum conditions for the amperometric determination of ethanol with the biosensor were as follows: working potential +0.1 V (vs. Ag/AgCl); supporting electrolyte: 0.1 M phosphate buffer solution at pH 6.8 containing 0.25 mM of the coenzyme (NAD+); working electrode: carbon paste with magnetically attached Fe3O4@Au NPs (0.012 mg ? cm?2 electrode area) with immobilized alcohol dehydrogenase (120 units per cm2 of electrode area). Linearity between signal and concentration was found for the range from 0.1 to 2.0 M ethanol (r2=0.995) with a detection limit of 0.07 M, a sensitivity of 0.02 µA ? mM?1 ? cm?2, a reproducibility of 4.0 % RSD, and a repeatability of 2.7 % RSD. The results for the determination of ethanol in alcoholic beverages showed good agreement with gas chromatography (GC) with recovery of 96.0 – 108.8 %.  相似文献   

20.
A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe3O4 NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg2(TMK)4]2+ complex on the negatively charged surface of the SDS-coated Fe3O4 NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe3O4 NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe3O4 NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100 ng mL−1 with r2 = 0.9994 (n = 8). The limit of detection for Hg(II) determination was 0.04 ng mL−1. Also, relative standard deviation (R.S.D.) for the determination of 2 and 50 ng mL−1 of Hg(II) was 5.2 and 4.7% (n = 6), respectively. Due to the quantitative extraction of Hg(II) from 1000 mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号