首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a theoretical and computational study of the properties and the response of the nanoplasma and of outer ionization in Xen clusters (n = 55–2171, initial cluster radius R0 = 8.7–31.0 ?) driven by ultraintense near-infrared laser fields (peak intensity IM = 1015–1020 Wcm-2, temporal pulse length τ= 10–100 fs, and frequency ν= 0.35 fs-1). The positively charged high-energy nanoplasma produced by inner ionization nearly follows the oscillations of the fs laser pulse and can either be persistent (at lower intensities of IM = 1015–1016 Wcm-2 and/or for larger cluster sizes, where the electron energy distribution is nearly thermal) or transient (at higher intensities of IM = 1018–1020 Wcm-2 and/or for smaller cluster sizes). The nanoplasma is depleted by outer ionization that was semiquantitatively described by the cluster barrier suppression electrostatic model, which accounts for the cluster size, laser intensity and pulse length dependence of the outer ionization yield. The electrostatic model was further utilized for estimates of the laser intensity and pulse width dependence of the border radius R0 (I) for the attainment of complete outer ionization at , while at R0 > R0 (I) a persistent nanoplasma prevails. R0 (I) establishes an interrelationship between electron dynamics and nuclear Coulomb explosion dynamics in ultraintense laser-cluster interactions.  相似文献   

2.
We performed classical molecular dynamics simulations to explore the controllability of the inner ionization process in Xen clusters (n = 2?2171), driven by ultraintense infrared Gaussian laser fields (peak intensity I M = 1015?1018 W cm?2, temporal pulse length τ = 10?100 fs, and frequency ν = 0.35 fs?1). Controllability of ion charge abundances and of their spatial distributions inside the cluster emerges from the different pulse length dependences of classical barrier suppression ionization (BSI) and of electron impact ionizations (EII), as well as from the time scale of the Coulomb explosion (CE). For large clusters (Xe2171), low intensities (1015 W cm?2), and long pulses (τ = 100 fs), EII is the dominating ionization channel, which favors the formation of maximum charged ions (Xe10+, Xe11+) in the cluster center. In contrast, BSI forms an inverse radial charge ordering with the highest charges in the exterior cluster shells. This suggests that the production of the two inverse radial charge distributions with an equal average ion charge can be forced by the choice of multiple pulses with different intensities and pulse lengths. At high intensities (1017?1018 W cm?2), where EII is insignificant and CE sets in much earlier, the BSI radial charge ordering and the enhancement of the ion charges beyond the single-atom limit by the ignition effect is observed only for short pulses.  相似文献   

3.
We exposed small size-controlled lead clusters with a few hundreds of atoms to laser pulses with peak intensities up to 1015 W cm-2 and durations between 60 fs to 2.5 ps. We measured kinetic energies and ionic charge of fragments as a function of the laser intensity and pulse duration. Highly charged Pbn+ ions up to n = 26 have been detected presenting kinetic energies up to 15 keV. For comparison with our experimental results, we have performed simulations of the laser coupling with a cluster-sized lead nanoplasma using a qualitative model that was initially proposed by Ditmire and co-workers at LLNL for the case of rare gas clusters. From these simulations we conclude that two mechanisms are responsible for the explosion dynamics of small lead clusters. As already observed for large rare gas clusters (n = 106), fragments with charge states below +10 are driven by Coulomb forces, whereas the higher charged fragments are accelerated by hydrodynamic forces. The latter mechanism is a direct consequence of the strong laser heating of the electron cloud in the nanoplasma arising from a plasmon-like resonance occurring at n e = 3n c. In order to obtain an optimized laser-nanoplasma coupling, our results suggest that the plasma resonance should occur at the peak intensity of the laser pulse. Due to inertial effects, even for such small-sized clusters, the observed optimum pulse duration is in the order of 1 ps which is in good agreement with our theoretical results. Received 18 March 2002 Published online 19 July 2002  相似文献   

4.
We present a theoretical study of the short-time relaxation of clusters in response to ultrafast excitations using femtosecond laser pulses. We analyze the excitation of different types of clusters (Hgn, Agn, Sin, C60 and Xen) and classify the relaxation dynamics in three different regimes, depending on the intensity of the exciting laser pulse. For low-intensity pulses (I<1012 W/cm2) we determine the time-dependent structural changes of clusters upon ultrashort ionization and photodetachment. We also study the laser-induced non-equilibrium fragmentation and melting of Sin and C60 clusters, which occurs for moderate laser intensities, as a function of the pulse duration and energy. As an example for the case of high intensities (I>1015 W/cm2), the explosion of clusters under the action of very intense ultrashort laser fields is described. Received: 26 November 1999 / Published online: 2 August 2000  相似文献   

5.
We give an overview of recent experimental results on optical-field-ionization collisional soft X-ray lasers developed at LOA. By focusing a 30-fs, circularly polarized Ti-sapphire laser pulse at an intensity of up to 8×1017 Wcm-2 into a low-density gas cell containing Xe or Kr, we produced a few mm long plasma column for soft X-ray amplifier. Saturated amplification has been achieved on the 4d95d(1S0)–4d95p(1P1) transition at 41.8 nm in Xe8+, and on the 3d94d(1S0)–3d94p(1P1) transition in Kr8+ at 32.8 nm. Under optimum pumping conditions the Xe8+ laser provides about (5±2)×109 photons per pulse whilst the Kr8+ laser delivers up to (2.5±1)×109 photons per shot. The repetition rate of these soft X-ray lasers is 10 Hz. The beam wavefront of the Xe8+ laser has been measured by a Shack–Hartmann soft X-ray wavefront sensor, and the pulse duration by a cross-correlation technique. PACS 42.55.Vc; 32.30.Rj; 52.50.Jm  相似文献   

6.
We observed multiple diffraction rings of a cw Ar+ laser beam from a nitrobenzene solution of saturable absorber BDN (bis-(4-dimethylaminodithiobenzil)-nickel) caused by the spatial self-phase modulation at low incident optical intensities. We obtained 37 rings for a 200-μm thick sample at an optical intensity of 38 W/mm2. The refractive-index change Δ;n and effective nonlinear refractive index n2 were determined from the number of observed rings and by the z-scan technique. We obtained large values of Δ;n∼0.1 and n2 = -2.9×;10-5 cm2/W. This large nonlinearity is attributed to a thermal effect resulting from linear absorption.  相似文献   

7.
We theoretically investigate the impact of multiple plasmon resonances on the charging of Xe clusters embedded in He nanodroplets under intense pump-probe laser excitation (τ = 25 fs, I 0 = 2.5 × 1014   W/cm2, λ = 800 nm). Our molecular dynamics simulations on Xe309He10 000 and comparison to results for free Xe309 give clear evidence for selective resonance heating in the He shell and the Xe cluster, but no corresponding double hump feature in the final Xe charge spectra is found. Though the presence of the He shell substantially increases the maximum charge states, the pump-probe dynamics of the Xe spectra from the embedded system is similar to that of the free species. In strong contrast to that, the predicted electron spectra do show well-separated and pronounced features from highly efficient plasmon assisted electron acceleration for both resonances in the embedded clusters. A detailed analysis of the underlying ionization and recombination dynamics is presented and explains the apparent disaccord between the resonance features in the ion and electron spectra.  相似文献   

8.
We theoretically investigate the lifetime of self-guided plasma channel in air by launching an auxiliary delayed long-pulsed laser beam following an ultrashort laser. A detailed model makes the electron-ion recombination, the attachment of electrons on neutral particles, and particularly the impact ionization and electron-detachment mechanism incorporate. The calculated results show that the temporal evolution of electron density is greatly flattened and broadened. When the auxiliary laser intensity exceeds the threshold 3.32 × 10^4 Wcm^-2, the channel lifetime is distinctly prolonged from nanosecond to microsecond, or even longer due to the electrical field enhancement. Furthermore, with the laser intensity up to 109 Wcm^-2, the impact ionization overwhelms the detachment in effect. Thus, it is an effective way to extend the channel lifetime and provides a real opportunity for applications.  相似文献   

9.
Fluorescence at 490 nm from the triatomic excimer Xe2Cl* has been investigated to determine the 308 nm absorption due to this species in an x-ray preionized, self-sustained gas discharge XeCl laser. The dependence of Xe2Cl* density on laser intensity (at 308 nm), buffer gas and Xe and HCl partial pressures has been determined for discharges with a peak electrical power deposition of 2.5 GWl–1. Xe2Cl* absorption is estimated to reach 0.6% cm–1 under non-lasing conditions but decreases to a non-saturable 0.2% cm–1 for intracavity laser intensity>1 MW cm–2. XeCl* and Xe2Cl* fluorescence intensities were found to be a similar for both helium and neon buffer gases but laser output was a factor of two greater with a neon buffer.  相似文献   

10.
355 nm激光光电离甲醛飞行时间质谱的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王燕  姚志  冯春雷  刘佳宏  丁洪斌 《物理学报》2012,61(1):13301-013301
利用脉宽为5 ns脉冲Nd: YAG 355 nm激光在功率密度为1011–1012 W/cm2条件下实现了甲醛含水团簇多光子电离, 并用飞行时间质谱对其电离产物和电离过程进行了研究. 实验中观测到了甲醛的质子化团簇系列 (CH2O)nH+(n=1–4), 甲醛的去质子化团簇系列(CH2O)nCHO+ (n=1–3), 以及两个起源于H2CO去质子和质子化的含水团簇系列HCO+(H2O)n(n=1,3,5)和H3CO+(H2O)n(n=1,3,5), 并对其中的一些团簇结构构型进行了猜测. 研究在不同的激光功率密度下甲醛团簇质谱峰的变换情况, 当激光密度达到9.3× 1011 W/cm2, 开始出现CH2O和H2O本体及其光致碎片的信号, 但对应的各质量峰没有明显地分辨开, 而是以包络的形式出现, 这是激光电离产生高能离子释放的一种表现, 提出认等离子体动力学鞘层加速机制(模型)来解释高能离子形成的物理机制. 关键词: 甲醛 团簇 飞行时间质谱 激光电离  相似文献   

11.
The main trends in the magic numbers observed for a class of simple-metal hetero-atomic clusters MxN (M = Na or K; N = monovalent or divalent impurity; X = number of host atoms) is explained using an extension of the jellium model of clusters. The appearance of a “new” magic number, n = 10 (n = number of valence electrons), and the growing importance of n = 20 over n = 18, as Δ+ increases (Δ+ is the difference in the density of the jellium backgrounds of the two metals) are explained by an inversion of the order of the energy levels with respect to that of pure clusters.  相似文献   

12.
J. Jha  M. Krishnamurthy 《Pramana》2010,75(6):1181-1189
Doping of cluster-based targets can bring out considerable modifications in the evolution of the nanoplasma formed from clusters in intense laser fields. The consequence could be either an increase or, a decrease (depending upon the properties and proportion of the dopant) in the emission of the resulting charge particles or photons from nanoplasma. As we can control the percentage of CS2 in the doped Ar-CS2 cluster, we can have argon-doped CS2 cluster (when argon constitutes about 10–40%) and CS2-doped argon cluster (when fraction of CS2 is 10–40%). In the experimental studies of electron spectra and X-ray emission from pristine Ar n (n ≤ 25, 000) and doped Ar-CS2 clusters at laser intensities of about 1015 W cm?2, it is observed that there is more than an order of magnitude enhancement in those emissions in doped Ar-CS2 clusters than in the former case. Conversely, a significant reduction in those emissions was found in the latter case. Such observations signify the importance of characterization of these targets. In this direction, we demonstrate a simple method for the characterization of doping level based on the Rayleigh scattering measurements.  相似文献   

13.
A theory is developed for calculating the charge composition of a cluster plasma produced upon irradiation of large atomic clusters by the field of a superatomic femtosecond laser pulse. The theory is based on the overbarrier process of a successive multiple internal ionization of atomic ions inside a cluster accompanied by the external field ionization. Collision ionization is also taken into account in the calculations. The theory is illustrated by the example of a cluster consisting of 106 xenon atoms irradiated by a 50-fs laser pulse with a peak intensity of 2×1018 W/cm2. In this case, the Xe26+ ions dominate. The amounts of atomic xenon ions with multiplicity up to 31 are calculated.  相似文献   

14.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

15.
16.
A novel one-color Xe+-N laser induced collisional charge transfer system is proposed, and preparation of the initial state of the system, i.e., Xe+ is experimentally implemented through resonance enhanced multi-photon ionization (REMPI) by ~440 nm dye laser. The REMPI of Xe is experimentally investigated through time-of-flight (TOF) mass spectrometry and the intensity dependence of Xe+ is obtained, aiming at the preparation of Xe+. The resonant ionization spectra of Xe at ~440 nm under several different conditions are measured, showing the impacts of mode purification and source pressure on the resonant ionization spectrum. The results indicate the feasibility of preparing the initial state of the Xe+-N system by ~440 nm multi-photon resonant ionization, which prepares for a further experiment of laser-induced collisional charge transfer.  相似文献   

17.
The intensity dependence of the multiphoton ionization spectra of Xe atoms has been investigated with an improved accuracy and well-controlled laser parameters. In particular, we have examined the ionization rates for X3+, X2−, X+ as functions of the laser intensity and the pressure in the target chamber. The apparatus used for these measurements is characterized by a high-energy resolution (better than 200 meV) and a completely digital acquisition system. The time-of-flight spectra clearly show the contributions of the different isotopes present in Xe gas. The laser pulses have been characterized with great accuracy by monitoring the energy, pulse width and divergence shot by shot. The ionization rates of the different ions have been used for testing the basic assumption of the Geltman theory of multiple ionization based on the single electron ionization model. We have found that for the small intensity range investigated the quantity (dXe +/dI)·(dXe 3+/dI)/(dXe 2+/dI)2 appears to be quite close to the value 0.5 predicted by this model.  相似文献   

18.
张树东  张海芳  曾文碧 《中国物理 B》2010,19(12):123602-123602
This paper studies supersonic jet-cooled 1-fluoronaphthalene(1FN) clusters by ultraviolet(UV) laser ionization at 281 nm in a time-of-flight mass spectrometer.The(1FN) + n(n=1-3) series cluster ions are observed where the signal intensity decreases with increasing cluster size.The effects of sample inlet pressures and ionization laser fluxes to mass spectral distribution are measured.Using density functional theory calculations,it obtains a planar geometric structure of 1FN dimer which is combined through two hydrogen bonds.The mass spectra indicate that the intensity of 1FN trimer is much weaker than that of 1FN dimer and this feature is attributed to the fact that the dimer may form the first "shell" in geometric structure while the larger clusters are generated based on this fundamental unit.  相似文献   

19.
The interaction of a 60 fs 790 nm laser pulse with beams of Ar+, C+, H2 +, HD+ and D2 + are discussed. Intensities up to 1016 Wcm-2 are employed. An experimental z-scanning technique is used to resolve the intensity dependent processes in the confocal volume.Received: 6 January 2003, Published online: 15 July 2003PACS: 32.80.Fb Photoionization of atoms and ions - 33.80.Rv Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) - 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift  相似文献   

20.
We report a combined experimental and computational investigation of small AlnOm species (n ≤20, m ≤ 12), produced in a laser vaporization cluster source. The oxygen content in the clusters was tuned by varying the oxygen concentration in the carrier gas. Ionization energies are bracketed using different ionizing photon energies in the energy range between 5.37 and 7.89 eV. Among the singly doped AlnO species, Al3O and Al15O are found to have relatively low ionization energies, which can be related to the magic character of the corresponding cations. Peculiarly low ionization energies also are observed for specific oxygen rich species (m > 1), suggesting the formation of ionically bound subunits. The structures and ionization energies of singly doped AlnO0,+ (n = 1 - 7) clusters were determined using density functional theory (B3LYP/6-311+G(d)). Electronic supplementary material Supplementary Online Material  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号