首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2,2′-[(8-hydroxyquinolin-7-yl)methylazanediyl]diacetic acid (HQMADA) was synthesized via reaction of 8-hydroxyquinoline with iminodiacetic acid in presence of paraformaldehyde with a yield of 27%. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m in pertechnetate form (99mTcO4 ) in the presence of stannous chloride dihydrate was carried out via chelation reaction. The reaction parameters that affect the labeling yield such as HQMADA concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-HQMADA complex (91.9%) was obtained by using 1.5 mg HQMADA, 50 μg SnCl2·2H2O, pH 8 and 30 min reaction time. Biodistribution studies in mice were carried out in experimentally induced infection in the left thigh using E. coli. 99mTc-HQMADA complex showed higher uptake (T/NT = 5.5 ± 0.3) in the infectious lesion than the commercially available 99mTc-ciprofloxacin (T/NT = 3.8 ± 0.8). Biodistribution studies for 99mTc-HQMADA complex in Albino mice bearing septic and aseptic inflammation models showed that 99mTc-HQMADA complex able to differentiate between septic and aseptic inflammation.  相似文献   

2.
The reaction of 99mTc of different oxidation states (+7, +4) with 2-thiouracil and 5-nitrobarbituric acid have been studied at different temperatures, pH and concentrations. The reaction mixtures have been analyzed at different times using thin layer chromatography (TLC) and a radio detector to show the peaks at the plates. 99mTc is obtained from the Mo generators with oxidation state (+7). The use of SnCl2 as a reducing agent gave 99mTc with oxidation state (+4). It is very difficult to separate the complexes formed from the reactions in very small concentration. The percentage of 99mTc and its oxidation state involved in the complexes can be determined. The labeling efficiencies (percentage of complex) in the reaction of 99mTc+7 with 5-nitro-barbituric-acid increases mostly at pH  10. Both oxidation states of 99mTc(+7, +4) can be detected at pH’s 4 and 10, but at pH  4, the reduced form 99mTCO2, is more pronounced. At pH  7 no complexes were detected and most of 99mTc remains as 99mTCO4 . By increasing the ligand concentration, the labeling efficiencies of the complex increases. For the reaction of 99mTc of oxidation states (+4, +7) with 2-thiouracil at different temperatures and analytical times it is concluded that several complexes with different Rf values were observed in equilibrium and most of these complexes were unstable.  相似文献   

3.
Celecoxib was labelled effectively with 99mTc. The labeling yield was found to be influenced by the amount of celecoxib, the amount of stannous chloride dihydrate, the reaction time, the temperature and the pH of the reaction mixture. The importance of stannous chloride dihydrate arises from its function as a reducing agent for pertechnetate to form complex celecoxib. The suitable amount required to produce high labeling yield of 99mTc-celecoxib was 500 μg SnCl2·2H2O. The pH of the reaction medium was found to play a significant role in this labeling process. The labeling reaction was performed at a neutral medium (pH 7). The labeling reaction proceeds well at room temperature (25 ± 1 °C) and the complex decomposes by heat. The labeled celecoxib (99mTc-celecoxib) showed a good localization in inflamed foci and a good imaging must be taken 4 h post injection.  相似文献   

4.
A novel quinoline derivative, 2,2′-[(5-chloro-8-hydroxyquinoline-7-yl) methylazanediyl] diacetic acid (CHQMADA) was labeled with 99mTc using SnCl2·2H2O as a reducing agent to give a complex with a labeling yield 94 %. Also [99mTc(H2O)3(CO)3]+ was prepared by heating at 100 °C for 30 min using 2 mg CHQMADA at pH 8 to give a labeling yield >99 %. 99mTc-(CO)3 CHQMADA and 99mTc-Sn(II)-CHQMADA showed tissue uptake (target to non target T/NT = 6.80 ± 0.22) and (T/NT = 5.65 ± 0.34) respectively in Escherichia coli induced infection, which is higher than the commercially available 99mTc-ciprofloxacin (T/NT = 3.80 ± 0.80). In conclusion, both complexes were able to differentiate between septic and aseptic inflammation with superiority of [99mTc-(CO)3 CHQMADA].  相似文献   

5.
A new formulation of a freeze-dried kit for the labeling of tetrofosmin with technetium-99m has been developed. The kit contains lyophilized mixture of 0.320 mg tetrofosmin [6,9-bis(2-ethoxyethyl)-3,12-dioxa-6,9-diphosphatetradecane], 0.025 mg stannous chloride dihydrate, 5 mg sodium tartrate and 5 mg sodium hydrogen carbonate. The product contains no antimicrobial preservative. When 99mTc pertechnetate up to 6 mL saline containing 200 mCi is added to lyophilized mixture, a lipophilic, cationic 99mTc complex is formed, 99mTc-tetrofosmin. The performance of newly developed kit is compared with commercially available MYOVIEW kit for heart imaging. The patient studies show that the images of heart obtained by 99mTc-tetrofosmin prepared by new formulation are equally good to MYOVIEW.  相似文献   

6.
3-Amino-2-quinoxalincarbonitrile 1,4-dioxide (AQCD) is a quinoxaline derivative, which was synthesized by condensation method. AQCD was labeled with 99mTc with labeling yield above 90% investigated by paper chromatography. 99mTc-AQCD was prepared using stannous chloride as reducing agent at pH 7 and 10 min reaction time. 99mTc-AQCD should be freshly prepared, otherwise the yield significantly decreased after 15 min post labeling. Stability study of 99mTc-AQCD reflected the short time stability of Biodistribution study of 99 mTc-AQCD in tumor bearing mice reflected that its uptake in tumor sites in both ascites and solid tumor sites. This uptake of 99mTc-AQCD in tumor sites was sufficient to radioimage the inoculated sites.  相似文献   

7.
One novel styrylpyridine derivatives(AV-45) coupled with 99mTc complex was synthesized. 99mTc-BAT-AV-45 was prepared by a ligand exchange reaction employing sodium glucoheptonate, and effects of the amount of ligand, stannous chloride, sodium glucoheptonate and pH value of reaction mixture on the radiolabeling yield were studied in details. Quality control was performed by thin layer chromatography and high performance liquid chromatography. Besides the stability, partition coefficient and electrophoresis of 99mTc-BAT-AV-45 were also investigated. The results showed that the average radiolabeling yield was (95 ± 1%) and 99mTc-BAT-AV-45 with suitable lipophilicity was stable and uncharged at physiological pH.  相似文献   

8.
A procedure for preparation of 99Mo/99mTc radioisotope generator based on low specific activity neutron activated 99Mo was developed. Aluminum molybdate(VI)-99Mo of high Mo(VI) content (~?364 mg/g Al99Mo) was prepared by mixing low specific activity molybdate(VI)-99Mo and aluminum mixture solution with isoamyl alcohol. Al99Mo gel matrix was precipitated when the pH of the mixture solution was raised to ~?5 by addition of NaOH to the mixture. Radiometric measurements indicate the strong fixation of Molybdate(VI)-99Mo species in the form of the sparingly insoluble Al99Mo gel matrix. The prepared AlMo gel matrix was physiochemically characterized. Al99Mo gel matrix was used as a base material for preparation of 99Mo/99mTc generator. The 99mTc eluted from 99Mo/99mTc radioisotope generator was found to have relatively high elution yield (84?±?2.3%), radionuclidic (≥?99.99%), radiochemical (98.1?±?0.9%) and chemical purity.  相似文献   

9.
A novel electrochemical process to avail clinical grade 99mTc from (n,γ)99Mo has been demonstrated. The electrochemical parameters were optimized to maximize the 99mTc yield with minimal 99Mo contamination. 99Mo/99mTc generators containing up to 29.6 GBq (800 mCi) 99Mo were developed and their performance were extensively evaluated for 10 days without changing the operating conditions. Very high radioactive concentration of 99mTcO4 of acceptable quality, commensurate with hospital radiopharmacy requirements could be availed from the system with >90% yield. The compatibility of the product for the formulation of 99mTc labeled radiopharmaceuticals such as 99mTc-DMSA and 99mTc-EC was found to be satisfactory in terms of high labeling yields. The proposed route represents an important step for enhancing the scope of accessing clinical grade 99mTc from low specific activity (n, γ)99Mo.  相似文献   

10.
Summary Cyanocobalamin (CNCbl), a kind of vitamin B12 (cobalamin, Cbl), which has a special binding capability to rapid dividing cells and proliferating tissue, especially tumors, has been modified and labeled by 99mTc. The optimal labeling condition was determined, and the biodistribution of 99mTc-DTPA-b-CNCbl both in normal mice and TA2 mice bearing MA891 mammary tumors were studied. 99mTc-DTPA-b-CNCbl showed low uptake and rapid clearance in nontarget tissues, and renal excretion. About 40% of uptake at 1 hour remained in the tumor at 12 hours p.i. The satisfying ratio of T/NT was acquired at 6 hours p.i.  相似文献   

11.
The optimization of the radiolabeling yield of ciprofloxacin analogous, norfloxacin, with technetium-99m (99mTc) was described. Dependence of the labeling yield of 99mTc–norfloxacin complex on the concentration of norfloxacin, SnCl2·2H2O content, pH of the reaction mixture and reaction time was studied. Norfloxacin was labeled with 99mTc at pH 3 with a labeling yield of 95.4% by using 5 mg norfloxacin, 50 μg SnCl2·2H2O and 30 min reaction time. The formed 99mTc–norfloxacin complex was stable for a time up to 3 h. Biological distribution of 99mTc–norfloxacin complex was investigated in experimentally induced inflammation rats using Staphylococcus aureus (bacterial infection model) and heat killed Staphylococcus aureus and turpentine oil (sterile inflammation model). In case of bacterial infection, the T/NT value for 99mTc–norfloxacin complex was found to be 6.9 ± 0.4 which was higher than that of the commercially available 99mTc–ciprofloxacin under the same experimental condition.  相似文献   

12.
Metronidazole (MTNZ) is an antiprotozoa drug, could be labeled with the 99mTc. MTZL could be used as an ideal vehicle to deliver radioactive decay energy of 99mTc to the sites of tumor, thus facilitate tumor imaging. The process of labeling was done using tin chloride as reducing agent. The optimum conditions required to label 25 μg MTZL were 100 μg stannous chloride, 30 min reaction time, room temperature at pH 7–9 using 0.5 M phosphate buffer. The radiochemical purity of the labeled compound, at the above conditions, was determined using paper chromatography. The yield was about 93%. About 2.5 × l06 of Ehrlich Ascites Carcinoma (EAC) was injected intrapritoneally (i.p) to produce ascites and intramuscularly (i.m) in the right thigh to produce solid tumor in female mice. Biodistribution studies were carried out by injecting solution of 99mTc-MTZL in normal and tumor bearing mice. The uptake in ascites was over 5% of the injected dose per gram tissue body weight, at 4 h post injection and above 4% in solid tumor. These data revealed localization of the tracer in the tumor tissues with high percentage sufficient to use 99 mTc MTZL as promising tool for diagnosis of tumor.  相似文献   

13.
99mTc?Crufloxacin (99mTc?CRUN) complex was prepared by reaction of different amounts of reduced sodium pertechnetate with different amount of Rufloxacin (RUN) antibiotic for the in vivo scintigraphic localization of the Staphylococcus aureus (S. aureus) infectious foci in Male Wister Rats (MWR) model. The 99mTc?CRUN complex was radiochemically and biologically characterized in terms of radiochemical stability in saline, serum, in vitro binding with S. aureus and biodistribution in artificially infected with S. aureus MWR. The 99mTc?CRUN complex showed stability more than 90% up to 240 min in normal saline with a maximum stability value of 98.10 ± 0.18% at 30 min after reconstitution. At 37 °C the complex showed in vitro permanence in serum up to 16 h with 13.90% side products during incubation. The 99mTc?CRUN complex showed saturated in vitro binding with S. aureus at different intervals with a maximum uptake value of 71.50%. Infected to normal muscle, infected to inflamed and inflamed to normal muscles ratios were approximately 6.04, 4.31 and 1.40. Based on the stability of the complex in saline, serum, in vitro binding with S. aureus and biodistribution results, the 99mTc?CRUN complex is recommended for in vivo scintigraphic localization of the S. aureus in vivo infectious foci in human.  相似文献   

14.
The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.  相似文献   

15.
In vivo imaging of tumours using radiolabelled somatostatin (SST) analogues has become an accepted clinical tool in oncology. HYNIC-Tyr3 octreotide and Tyr3 octreotide were synthesized by FMOC solid-phase peptide synthesis using a semi-automated synthesizer. These were analyzed and purified by RP-HPLC, mass spectroscopy, IR spectroscopy, 1H NMR and 13C NMR. The prochelator 6-BOC-HYNIC was also synthesised and characterised indigenously. HYNIC-Tyr3 octreotide was labelled with 99mTc using Tricine and EDDA as coligand by SnCl2 method. Labelling with 99mTc was performed at 100 °C for 15 min and radiochemical analysis by ITLC and HPLC methods. The radiochemical purity of the complex was over 98% and log p value was found to be −1.27 ± 0.12. The stability of radiolabelled peptide complex was checked at 37 °C up to 24 h. Blood clearance and protein-binding study was also performed. In vivo biodistribution studies in rat showed uptake of 99mTc-HYNIC-TOC in kidney than any other organs. The blood clearance was faster with rapid excretion through kidneys and relatively low uptake in liver.  相似文献   

16.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with aminomethylenediphosphonic acid (AMDP) was synthesized through a multiple-step reaction. HYNIC–AMDP could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) as coligand to form the 99mTc–HYNIC–AMDP complex in high yield (> 95%). Its partition coefficient indicated that it was a good hydrophilic complex. The biodistribution studies of 99mTc–HYNIC–AMDP in normal ICR mice showed that this complex had high bone uptake and low or negligible accumulation in non-target organs. As compared with 99mTc–MDP, 99mTc–HYNIC–AMDP had a higher bone uptake and the ratios of bone/blood and bone/muscle at early time after injection, suggesting that it could be potentially useful for bone imaging at an earlier time after injection according to further investigations of the biological behavior of this complex.  相似文献   

17.
The optimization of the radiolabeling yield of cefazolin with 99mTc was described. Dependence of the labeling yield of 99mTc-cefazolin complex on the amounts of cefazolin and SnCl2·2H2O, pH and reaction time was studied. Cefazolin was labeled with 99mTc with a labeling yield of 89.5 % by using 1 mg cefazolin, 5 μg SnCl2·2H2O at pH 4 and 30 min reaction time. The radiochemical purity of 99mTc-cefazolin was evaluated with ITLC. The formed 99mTc-cefazolin complex was stable for a time up to 3 h, after that the labeling yield decreased 64.0 % at 8 h. Biological distribution of 99mTc-cefazolin complex was investigated in experimentally induced inflammation mice, in the left thigh, using Staphylococcus aureus (bacterial infection model) and turpentine oil (sterile inflammation model). Both thighs of the mice were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. In case of bacterial infection, T/NT for 99mTc-cefazolin complex was 8.57 ± 0.4 after 0.5 h, which was higher than that of the commercially available 99mTc-ciprofloxacin under the same experimental conditions. The ability of 99mTc-cefazolin to differentiate between septic and aseptic inflammation indicates that 99mTc-cefazolin could undergo further clinical trials to be used for imaging sites of infection.  相似文献   

18.
Summary Piroxicam was labeled effectively with 99mTc due to the presence of electron donating atoms such as sulfur, nitrogen, and oxygen in its structure. The labeling yield was found to be influenced by different factors such as the amount of piroxicam, stannous chloride dihydrate, pH of the reaction mixture, reaction time and reaction temperature. The suitable amount of stannous chloride dihydrate required to produce high labeling yield of 99mTc-piroxicam was 50 μg, above this quantity (200 μg) a colloidal solution was formed. Another factor which plays a significant role in this labeling reaction is the pH of the reaction medium. The labeling reaction was done only at alkaline pH range from 9-11, because piroxicam was not soluble at acidic or neutral pH. The labeling reaction proceeded well at room temperature and the complex was decomposed by heat. The labeled piroxicam (99mTc-piroxicam ) showed good localization in inflamed foci and good imaging must be taken at 24-hour post injection, as the ratio of both types of inflammation (sterile and septic) to the background are 10.6 and 8.7, respectively.  相似文献   

19.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with the amino analogue of metronidazole (MN) was synthesized through a multiple-step reaction. HYNIC-MN could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) and ethylenediamine -N,N′-diacetic acid (EDDA) as coligands to form the 99mTc–HYNIC–MN complex in high yield (>95%). Its partition coefficient indicated that it was a good hydrophilic complex. The tumor cell experiment showed that the 99mTc–HYNIC–MN complex had a certain hypoxic selectivity. The biodistribution studies of 99mTc–HYNIC–MN in Kunming mice bearing S180 tumor showed a favorable tissue distribution profile with high tumor uptake, and low or negligible accumulation in non-target organs, suggesting 99mTc–HYNIC–MN would be a novel potential tumor hypoxia imaging agent.  相似文献   

20.
Cefuroxime axetil, a cephalosporin antibiotic used to treat bacterial infections, was investigated to label with 99mTc. Radiolabeling of cefuroxime axetil was carried out by using stannous chloride method. Effects of pH and stannous chloride amount on the radiolabeling yield were investigated. The radiochemical purity of 99mTc-cefuroxime axetil was determined by thin layer radio chromatography (TLRC), electrophoresis and high performance liquid chromatography. The maximum radiolabeling yield was 98±1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号