首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a new smoothed particle hydrodynamics (SPH) model for simulating multiphase fluid flows with large density ratios. The new SPH model consists of an improved discretization scheme, an enhanced multiphase interface treatment algorithm, and a coupled dynamic boundary treatment technique. The presented SPH discretization scheme is developed from Taylor series analysis with kernel normalization and kernel gradient correction and is then used to discretize the Navier‐Stokes equation to obtain improved SPH equations of motion for multiphase fluid flows. The multiphase interface treatment algorithm involves treating neighboring particles from different phases as virtual particles with specially updated density to maintain pressure consistency and a repulsive interface force between neighboring interface particles into the pressure gradient to keep sharp interface. The coupled dynamic boundary treatment technique includes a soft repulsive force between approaching fluid and solid particles while the information of virtual particles are approximated using the improved SPH discretization scheme. The presented SPH model is applied to 3 typical multiphase flow problems including dam breaking, Rayleigh‐Taylor instability, and air bubble rising in water. It is demonstrated that inherent multiphase flow physics can be well captured while the dynamic evolution of the complex multiphase interfaces is sharp with consistent pressure across the interfaces.  相似文献   

2.
杨秋足  徐绯  王璐  杨扬 《力学学报》2019,51(3):730-742
多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.   相似文献   

3.
We introduce a smoothed particle hydrodynamics (SPH) concept for the stabilization of the interface between 2 fluids. It is demonstrated that the change in the pressure gradient across the interface leads to a force imbalance. This force imbalance is attributed to the particle approximation implicit to SPH. To stabilize the interface, a pressure gradient correction is proposed. In this approach, the multi‐fluid pressure gradients are related to the (gravitational and fluid) accelerations. This leads to a quasi‐buoyancy correction for hydrostatic (stratified) flows, which is extended to nonhydrostatic flows. The result is a simple density correction that involves no parameters or coefficients. This correction is included as an extra term in the SPH momentum equation. The new concept for the stabilization of the interface is explored in 5 case studies and compared with other multi‐fluid models. The first case is the stagnant flow in a tank: The interface remains stable up to density ratios of 1:1000 (typical for water and air), in combination with artificial wave speed ratios up to 1:4. The second and third cases are the Rayleigh‐Taylor instability and the rising bubble, where a reasonable agreement between SPH and level‐set models is achieved. The fourth case is an air flow across a water surface up to density ratios of 1:100, artificial wave speed ratios of 1:4, and high air velocities. The fifth case is about the propagation of internal gravity waves up to density ratios of 1:100 and artificial wave speed ratios of 1:4. It is demonstrated that the quasi‐buoyancy model may be used to stabilize the interface between 2 fluids up to high density ratios, with real (low) viscosities and more realistic wave speed ratios than achieved by other weakly compressible SPH multi‐fluid models. Real wave speed ratios can be achieved as long as the fluid velocities are not very high. Although the wave speeds may be artificial in many cases, correct and realistic wave speed ratios are essential in the modelling of heat transfer between 2 fluids (eg, in engineering applications such as gas turbines).  相似文献   

4.
In this paper, an integrated smoothed particle hydrodynamics (SPH) model for complex interfacial flows with large density ratios is developed. The discrete continuity equation and acceleration equation are obtained by considering the time derivative of the volume of particle and Eckart's continuum Lagrangian equation. A continuum surface force model is used to meet the fact that surface force may not be distributed uniformly on each side of the interface. An improved boundary condition is imposed to model wall free-slip and no-slip condition for interfacial flows with large density ratios. Particle shifting algorithm (PSA) is added for interfacial flows by imposing the normal correction near the interface, called as Interface-PSA. Then four representative numerical examples, including droplet deformation, Rayleigh-Taylor instability, dam breaking, and bubble rising, are presented and compared well with reference data. It is demonstrated that inherent interfacial flow physics can be well captured, including surface tension and the dynamic evolution of the complex interfaces.  相似文献   

5.
陈飞国  葛蔚 《力学学报》2021,53(9):2357-2373
光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)具有粒子方法的无网格和全拉格朗日特征, 适用于具有界面大变形、不连续性和多物理场的多相流的高精度模拟. SPH方法模拟多相流已有大量报道, 具体的实现方式也大不相同. 本文首先阐述了采用SPH方法模拟流体的基本控制方程, 以及求解过程中需要考虑的流体压力求解、表面张力、固体边界等问题. 整理和总结了基于SPH方法进行多相流模拟的主要实现方式: (1)双流体模型的拉格朗日求解器: 两相离散为两组独立SPH粒子, 并用显式相间作用耦合两相; (2)多相SPH方法: SPH方法对多相流模拟的自然延伸, 相间作用由SPH参数隐式描述; (3) SPH与其他离散方法的耦合: 差异较大的两相各自采用不同离散方法, 发挥不同拉格朗日方法的优点; (4) SPH和基于网格方法的耦合: 网格方法处理简单的单相流动主体, 获得精度和效率间的平衡. 另外, 还在模拟参数物理化等方面论述了与SPH方法模拟多相流相关的一些改进和修正方法, 并在最后讨论和建议了提高多相流SPH模拟效率和精度的措施.   相似文献   

6.
A method for simulating two‐phase flows including surface tension is presented. The approach is based upon smoothed particle hydrodynamics (SPH). The fully Lagrangian nature of SPH maintains sharp fluid–fluid interfaces without employing high‐order advection schemes or explicit interface reconstruction. Several possible implementations of surface tension force are suggested and compared. The numerical stability of the method is investigated and optimal choices for numerical parameters are identified. Comparisons with a grid‐based volume of fluid method for two‐dimensional flows are excellent. The methods presented here apply to problems involving interfaces of arbitrary shape undergoing fragmentation and coalescence within a two‐phase system and readily extend to three‐dimensional problems. Boundary conditions at a solid surface, high viscosity and density ratios, and the simulation of free‐surface flows are not addressed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an incompressible SPH (ISPH) technique to simulate multifluid flows. The SPH method is a mesh‐free particle modeling approach that can treat free surfaces and multi‐interfaces in a simple and efficient manner. The ISPH method employs an incompressible hydrodynamic formulation to solve the fluid pressure that ensures a stable pressure field. Two multifluid ISPH models are proposed following different interface treatments: the coupled ISPH model does not distinguish the different fluid phases and applies the standard ISPH technique across the interface, whereas the decoupled ISPH model first treats each fluid phase separately and then couples the different phases by applying pressure and shear stress continuities across the interface. The two proposed models were used to investigate a gravity underflow with a low density ratio in a Generalized Reservoir Hydrodynamics (GRH) flume and a horizontal lock exchange flow with a high density ratio. Comparisons with data and relevant numerical error analysis indicated that the decoupled model performed well in cases of both low and high density ratios because of the accurate treatment of interface boundaries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟   总被引:3,自引:3,他引:0  
徐建于  黄生洪 《力学学报》2019,51(4):998-1011
汇聚激波诱导不同物质界面的Richtmyer-Meshkov(RM)不稳定现象在惯性约束核聚变领域有重要的学术意义和工程背景.基于网格离散的宏观流体力学方法由于数值扩散问题往往需要高阶精度算法才能准确追踪界面演化,且对大变形和破碎合并等复杂界面追踪也极为困难.光滑粒子流体动力学(smoothed particlehydrodynamics,SPH)方法采用纯拉格朗日算法,可以有效克服上述难点.但经典SPH算法需采用人工黏性处理强间断,在激波间断处往往会出现严重的非物理振荡,对于涉及强冲击不稳定性问题,很难达到理想的模拟效果.本文采用基于HLL黎曼求解器的SPH算法,实现了对强激波和大密度比物质界面的有效分辨和追踪.一维数值校核证明了代码的可靠性、健壮性,并进一步模拟了二维圆柱形汇聚冲击波冲击四边形轻/重气界面诱导的RM不稳定性问题,与已有实验结果进行了对比,发现模拟结果与实验结果吻合.通过分析界面演化过程中的密度及压力变化,发现本文所采用的方法可准确地追踪激波与界面作用的复杂界面和波系演化规律.研究结果为进一步理解和解释汇聚冲击条件下的RM不稳定性机理奠定了基础.   相似文献   

10.
Multiphase flows are critical components of many physical systems; however, numerical models of multiphase flows with large parameter gradients can be challenging. Here, two different numerical methods, volume of fluid (VOF) and smoothed particle hydrodynamics (SPH), are used to model the buoyant rise of isolated gas bubbles through quiescent fluids for a range of Bond and Reynolds numbers. The VOF is an Eulerian grid–based method, whereas the SPH is Lagrangian and mesh free. Each method has unique strengths and weaknesses, and a comparison of the two approaches as applied to multiphase phenomena has not previously been performed. The VOF and SPH simulations are compared, verified, and validated. Results using two-dimensional VOF and SPH simulations are similar to each other and are able to reproduce numerical benchmarks and experimental results for sufficiently large Morton and Reynolds numbers. It is also shown that at low Reynolds numbers, the two methods, SPH and VOF, diverge in the transient regime of the bubble rise. Regimes that require simulations capable of representing three-dimensional drag are identified as well as regimes in which results from VOF and SPH diverge.  相似文献   

11.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
An incompressible smoothed particle hydrodynamics (ISPH) method is developed for the modeling of multiphase Newtonian and inelastic non-Newtonian flows at low density ratios. This new method is the multiphase extension of Xenakis et al, J. Non-Newtonian Fluid Mech., 218, 1-15, which has been shown to be stable and accurate, with a virtually noise-free pressure field for single-phase non-Newtonian flows. For the validation of the method a semi-analytical solution of a two-phase Newtonian/non-Newtonian (inelastic) Poiseuille flow is derived. The developed method is also compared with the benchmark multiphase case of the Rayleigh Taylor instability and a submarine landslide, thereby demonstrating capability in both Newtonian/Newtonian and Newtonian/non-Newtonian two-phase applications. Comparisons with analytical solutions, experimental and previously published results are conducted and show that the proposed methodology can accurately predict the free-surface and interface profiles of complex incompressible multi-phase flows at low-density ratios relevant, for example, to geophysical environmental applications.  相似文献   

13.
目前, 无网格光滑粒子流体动力学SPH粒子法在波浪与结构物相互作用研究方面得到广泛应用, 但该方法模拟波浪远距离传播时, 常常面临严重的能量耗散问题, 导致波高非物理性降低, 给大范围海域、长时间作用下的波-物耦合作用研究带来一定困难. 对此, 本文采用一种核函数修正算法, 在确保粒子间相互作用对称性的同时, 改进压力梯度离散项的计算精度, 设法解决SPH方法中能量非物理性耗散的难题. 相较于前人减缓能量非物理性衰减的方法, 本文的修正SPH算法避免了自由液面搜索等复杂处理过程, 并能保证动量守恒特性. 数值结果中, 采用振荡液滴、规则波、不规则波等算例, 验证本修正SPH算法的准确性和有效性. 结果表明, 该修正SPH算法能准确模拟振荡液滴形态变化, 且动能保持较好守恒性. 通过数值水池与物理水池两者规则波与不规则波结果的对比分析表明, 基于本文修正SPH算法建立的数值波浪水池具有较好的抗能量衰减效果, 能实现长时间、远距离波浪传播的准确模拟. 此外, 本算法能在低光滑长度系数条件下, 实现精确模拟, 将极大缩减三维SPH模拟的时间, 从而节约计算成本.   相似文献   

14.
In this paper, a two-fluid smoothed particle hydrodynamics (SPH) model, based on the mixture theory, is employed to investigate the complex interactions between the solid particles and the ambient water during the process of submerged granular column collapse. From the simulation, two regimes of the collapse, one being quick and the other being slow, are identified and the reasons of formation are analyzed. It is found that, a large internal friction angle of the granular phase, representing large drag force between solid particles, helps form the slow regime. Small hydraulic conductivity, representing large inter-phase drag force, also retards the collapse dramatically. Good agreements between our numerical results and other researchers’ numerical and experimental results are observed, which demonstrates the capability of the proposed two-fluid SPH approach in dealing with saturated water–soil mixture flows.  相似文献   

15.
In this paper, we present a two‐dimensional computational framework for the simulation of fluid‐structure interaction problems involving incompressible flexible solids and multiphase flows, further extending the application range of classical immersed computational approaches to the context of hydrodynamics. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single‐phase flows. First, a variation of classical immersed techniques, pioneered with the immersed boundary method (IBM), is presented by rearranging the governing equations, which define the behaviour of the multiple physics involved. The formulation is compatible with the “one‐fluid” formulation for two‐phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, immersed deformable structures and fluid phases are modelled in an identical manner except for the computation of the deviatoric stresses. The numerical technique followed in this paper builds upon the immersed structural potential method developed by the authors, by adding a level set–based method for the capturing of the fluid‐fluid interfaces and an interface Lagrangian‐based meshless technique for the tracking of the fluid‐structure interface. The spatial discretisation is based on the standard marker‐and‐cell method used in conjunction with a fractional step approach for the pressure/velocity decoupling, a second‐order time integrator, and a fixed‐point iterative scheme. The paper presents a wide d range of two‐dimensional applications involving multiphase flows interacting with immersed deformable solids, including benchmarking against both experimental and alternative numerical schemes.  相似文献   

16.
We simulated rapid flow in transient plane Couette flows of granular particles using the smoothed particle hydrodynamics(SPH) solutions of a set of continuum equations.This simulation was performed to test the viability of SPH in solving the equations for the solid phase of the two-fluid model associated with fluidization.We found that SPH requires the handling of fewer particles in simulating the collective behavior of rapid granular flow,thereby bolstering expectations of solving the equations for the solid phase in the two-fluid modeling of fluidization.Further work is needed to investigate the effect of terms describing pressure and viscous stress of solids on stability in simulations.  相似文献   

17.
In this paper, an incompressible smoothed particle hydrodynamics (SPH) method is presented to solve unsteady free-surface flows. Both Newtonian and viscoelastic fluids are considered. In the case of viscoelastic fluids, both the Maxwell and Oldroyd-B models are investigated. The proposed SPH method uses a Poisson pressure equation to satisfy the incompressibility constraints. The solution algorithm is an explicit predictor-corrector scheme and employs an adaptive smoothing length based on density variations. To alleviate the numerical difficulties encountered when fluid is highly stretched, an artificial stress term is incorporated into the momentum equation which reduces the risk of unrealistic fractures in the material. Two challenging test cases, the impacting drop and the jet buckling problems, are solved to demonstrate the capability of the proposed scheme in handling viscoelastic flows with complex free surfaces. The jet buckling test case was solved for a wide range of Weissenberg numbers. It was shown that in all cases the method is stable and fairly accurate and agrees well with the available data.  相似文献   

18.
The hydrate formation or dissociation in deep subsea flow lines is a challenging problem in oil and gas transport systems. The study of multiphase flows is complex while necessary due to the phase changes (i.e., liquid, solid, and gas) that occur with increasing the temperature and decreasing the pressure. A one-dimensional multiphase flow model coupled with a transient hydrate kinetic model is developed to study the characteristics of the multiphase flows for the hydrates formed by the phase changes in the pipes. The multiphase flow model is derived from a multi-fluid model, while has been widely used in modelling multiphase flows. The heat convection between the fluid and the ambient through the pipe wall is considered in the energy balance equation. The developed multiphase flow model is used to simulate the procedure of the hydrate transport. The results show that the formation of the hydrates can cause hold-up oscillations of water and gas.  相似文献   

19.
Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.  相似文献   

20.
In this paper a truly incompressible version of the smoothed particle hydrodynamics (SPH) method is presented to investigate the surface wave overtopping. SPH is a pure Lagrangian approach which can handle large deformations of the free surface with high accuracy. The governing equations are solved based on the SPH particle interaction models and the incompressible algorithm of pressure projection is implemented by enforcing the constant particle density. The two‐equation kε model is an effective way of dealing with the turbulence and vortices during wave breaking and overtopping and it is coupled with the incompressible SPH numerical scheme. The SPH model is employed to reproduce the experiment and computations of wave overtopping of a sloping sea wall. The computations are validated against the experimental and numerical data found in the literatures and good agreement is observed. Besides, the convergence behaviour of the numerical scheme and the effects of particle spacing refinement and turbulence modelling on the simulation results are also investigated in further detail. The sensitivity of the computed wave breaking and overtopping on these issues is discussed and clarified. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号