首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and magnetic properties of Fe-N and Fe-Ti-N films have been studied as a function of annealing temperature Ta with a transmission electron microscope and a vibrating sample magnetometer. The as-prepared Fe-N films consist of the γ-Fe4N and α′′-Fe16N2 phases, and the Fe-Ti-N films are composed of the γ-Fe4N, α′′-Fe16N2, and TiN phases. The structural changes with annealing temperature in the Fe-N films are distinct. The α′′-Fe16N2 decomposes into α+γ phases in the Fe-N film annealed at about 300 °C, and it disappears in the film annealed at 350 °C. Annealing of the Fe-Ti-N films shows no structural changes between room temperature (RT) and 500 °C. The saturation magnetization 4πMS and coercivity Hc of the Fe-N films change drastically with the annealing temperature Ta, whereas those of the Fe-Ti-N films do not change with Ta up to 500 °C. These results indicate that the additon of Ti may improve the thermal stability of Fe-N films. Recieved: 6 Juli 1998 / Accepted: 19 Oktober 1998 / Published online: 10 March 1999  相似文献   

2.
We present in this work the direct observation of HO2 radicals after irradiation of benzene C6H6 at 248 nm in the presence of O2. HO2 radicals have been unambiguously identified using the very selective and sensitive detection of continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to a laser photolysis reactor. HO2 radicals were detected in the first vibrational overtone of the OH stretch at 6638.20 cm-1, using a DFB diode laser. This reaction might be important because 248 nm photolysis of H2O2 has often been used in the past for studying the OH-initiated degradation of C6H6, often using a large excess of C6H6 over H2O2. The possible importance of the title reaction with respect to these former laboratory studies has been quantified through comparison with HO2 signals obtained from 248 nm photolysis of H2O2: one obtains under our conditions (excess O2 and total pressure of 6.6 kPa helium) from the 248 nm irradiation of identical initial concentrations [C6H6]=[H2O2] the following relative initial radical concentrations: [HO2 ]=(0.28±0.05)×[OH]. Experiments with various O2 concentrations have revealed that the origin of the HO2 radicals is not the reaction of H-atoms with O2, but must originate from the reaction of O2 with excited C6H6 *. The quantum yield of C6H6 * formation has been deduced to ϕ=0.2±0.1. PACS  42.62.Fi; 82.20.Pm; 82.33.Tb  相似文献   

3.
2 Σ+) was measured in a low-pressure H2/O2 flame for three rotational levels of OH (v=1). Rate coefficients for collisions with H2O and N2 were determined. At 1600 K, kVET (N2) is (in 10-11 cm3s-1) 10.1±2, 6.1±1.8, and 3.8±1.3 for N=0, 5, and 13, respectively. The kVET (H2O) is <1.1±1.8. The kQ (N2) is <2.4±8 for both vibrational levels. The kQ (H2O) in v=1 is 59.1±6.5, 54.7±6.4, and 54.9±6.6 for N=0, 5, and 13, respectively, and, determined indirectly, 74.6±10.4, 70.6±10.3, and 63.4±7.3 for N=0, 5, and 13 in v=0. A multi-level model of OH population dynamics, which is being developed for the quantitative simulation of experimental LIF spectra, was extended to include VET. It was attempted to simulate state-to-state-specific VET coefficients for N2 collisions. From these simulations it appears that angular momentum conservation does not determine the N dependence of the vibrational relaxation step. Received: 9 September 1996/Revised version: 6 January 1997  相似文献   

4.
A new polymeric material for optical switching   总被引:1,自引:0,他引:1  
′ -(2′′,4′′,6′′-trichlorophenazoamino)-phenazo-4-nitrobenzene, was studied. Large nonresonant optical nonlinearity (χ(3)≥10-28 C4m/J3 or 10-9 esu) and fast response time (t<20 ps) were measured by forward degenerate four-wave mixing experiment. Optical bistable behavior in a quasi-waveguide interferometer with the thin film of the material was observed. The potential of the material for optical switching was evaluated. Received: 20 July 1998/Revised version: 11 September 1998  相似文献   

5.
A laser-induced fluorescence (LIF) system was developed to diagnose the reaction and transport of radicals in the ArF-laser-assisted CVD environment. The C2(a 3 II u) radicals were produced by the multi-photon dissociation of C2H2. The transport of the radical was directly measured by LIF. The disappearance rate of the radical in C2H2 was also determined. By using the values determined, the in-flux of the C2 radicals onto a substrate was investigated, based on a diffusion model.  相似文献   

6.
The direct solid-state synthesis of C60H2 has been demonstrated by controlling the amount of hydrogen introduced into the reaction with C60. Palladium hydride has been used as the source of hydrogen. The main product 1,2-C60 is the isomer predicted to have the lowest energy of the possible 23 isomers; in addition, small amounts of the thermodynamically most stable isomer of C60H4, 1,2,3,4-C60H4, have also been obtained.  相似文献   

7.
2 in a flame, excited by a tunable KrF laser near 248 nm. The first comprises several P and R lines of the (1,0) band of the e 3Πg-a 3Πu Fox–Herzberg system, with fluorescence bands extending past 350 nm. The second is the band head region of the (7,1) band of the D 1Σu +←B1Σg + system, with fluorescence at 232 nm from D to the X 1Σg + ground state. Neither band has been previously observed in any environment. The flame in these experiments is highly sooting, and the C2 seen here is likely produced by laser vaporization of the soot with subsequent laser photolysis of a C2 precursor. In a rich flame, this fluorescence could cause interferences in other studies such as KrF laser Raman scattering. Moreover, signal level calculations suggest native C2 near 10 ppm could be readily observed using the Fox–Herzberg excitation. Raman measurements of major species (X≥0.01) in the same flame, using the KrF laser, are in good agreement with a model prediction. Received: 2 April 1998/Revised version: 8 June 1998  相似文献   

8.
6 H5CH3, C6H6, and C6H5CH(CH3)2) to pulsed visible laser radiation of a copper vapor laser (λ=510.6 nm). The X-ray Auger electron spectroscopy (XAES), reflection high energy electron diffraction (RHEED), and Raman analysis are employed to characterize the deposited films. The sp3 fraction in deposited films amounts to 60–70% and depends on the precursor. The average film thickness on a glass substrate is about 100 nm. The films show excellent adherence, are transparent in the visible and have microhardness of 50–70 GPa, as measured by nanoindentor. Received: 28 September 1998 / Accepted: 13 January 1999  相似文献   

9.
s , the surface diffusion coefficient, Ds , and the surface reaction rate coefficient, βs , of Cu on alumina are determined in the temperature range 1048–1198 K. Measuring simultaneously the time dependence of the effective thickness, Heff(t), the lateral shift of the boundary, y(t) of beaded films (BF) and using vapour pressure data we concluded that the process is controlled by surface reaction at the perimeters of beads. Supposing Arrhenius-type temperature dependence for Ds , βs and λs the activation energies and preexponential factors have been calculated. Received: 2 October 1996/Accepted: 27 November 1996  相似文献   

10.
CO2 laser-induced plasma CVD synthesis of diamond   总被引:1,自引:0,他引:1  
2 laser maintenance of a stationary optical discharge in a gas stream, exhausting over a substrate into the air (laser plasmatron). Nano- and polycrystalline-diamond films were deposited on tungsten substrates from atmospheric-pressure Xe(Ar):H2:CH4 gas mixtures at flow rates of 2 ?/min. A 2.5-kW CO2 laser focused beam produced plasma. The deposition area was about 1 cm2 and growth rates were up to 30–50 μm/h. Peculiarities and advantages of laser plasmatrons are discussed. Received: 15 January 1998/Accepted: 16 January 1998  相似文献   

11.
The mixed micellization between the cationic gemini surfactant [ C12H25( CH3)2N+( C2H4) N+( CH3)2 C12H25•2Br-] and the cationic cetyltrimethylammonium bromide (CTAB) in 150 mM KBr solutions has been investigated. The variation of the cmc of the mixtures, measured by surface tension experiments, with composition revealed synergism in micelle formation. T-Jump and light scattering experiments performed in the vicinity of the crossover volume fraction showed the existence of two micellar populations, possibly linear and toroidal micelles. Rheological and dynamic light scattering experiments allowed to fully characterize the linear viscoelasticity of the mixtures. These measurements revealed synergistic gains in viscoelastic properties with a maximum of the stress-relaxation time around the equimolar composition. These effects are ascribed to a progressive intermicellar crosslinking resulting from a continuous increase of the end-cap energy with the 12-2-12 content in the mixture. Received: 18 November 2002 / Accepted: 8 April 2003 / Published online: 27 May 2003 RID="a" ID="a"e-mail: candau@fresnel.u-strasbg.fr  相似文献   

12.
ABSTRACT

Oxidation of the sodium salt of 2-methyl, 3-methyl, 4-methyl and 4-chloro-3-methylphenyldithiocarbonic acid by I2 affords the disulfides of respective dithiocarbonates [(ArOCS2)2] (Ar?=?2-CH3C6H4, 3-CH3C6H4, 4-CH3C6H4 and 4-Cl-3-CH3C6H3. Vanadium(V) and Niobium(V) complexes of 2-methyl, 3-methyl, 4-methyl and 4-chloro-3-methylphenyldithiocarbonates have also been synthesised by one-step synthetic route. The metal salt (VOCl3 and NbCl5) were reacted with 2-CH3C6H4, 3-CH3C6H4, 4-CH3C6H4 and 4-Cl-3-CH3C6H3OCS2Na in 1:2 stoichiometric molar ratio yielding the complexes corresponding to the molecular formula [(ArOCS2)2VO(Cl)] and [(ArOCS2)2NbCl3] [Ar?=?2-CH3C6H4, 3-CH3C6H4, 4-CH3C6H4 and 4-Cl-3-CH3C6H3OCS2)]. The compounds were characterised by elemental analyses, infrared, mass and heteronuclear NMR (1H and 13C) spectroscopic studies. Thermogravimetric analysis and scanning electron microscopic analyses were also carried out for deeper investigation of the structural features. Comprehensive theoretical investigation was performed by applying density functional theory (DFT) calculations on vanadium and niobium complexes by the DFT/B3LYP/LANL2DZ method to obtain the optimised molecular geometry, vibrational frequencies, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), thermodynamic properties and various other quantum-mechanical parameters.  相似文献   

13.
Hydroxyl tagging velocimetry (HTV) in experimental air flows   总被引:1,自引:0,他引:1  
 The new nonintrusive instantaneous molecular flow tagging method, hydroxyl tagging velocimetry (HTV), previously demonstrated only for high-temperature reacting flows, is now demonstrated in low-temperature (300 K) ambient air flowfields. Single-photon photodissociation of ground-state H2O by a ∼193-nm ArF excimer laser ‘writes’ very long grid lines (>50 mm) of superequilibrium OH and H photoproducts in a room air flowfield due to the presence of ambient H2O vapor. After displacement, the positions of the OH tag lines are revealed through fluorescence caused by A2Σ+ (ν=0)?X2Πi (ν′′=0) OH excitation using a pulsed frequency-doubled dye laser with an operating output wavelength of ∼308 nm. The dye ‘read’ laser accesses the strong Q1(1) line, compensating for the relatively weak 193-nm absorption of room-temperature H2O. The weak absorption of ground vibrational state H2O has previously precluded the use of HTV at low temperatures, since previous HTV systems relied on a KrF excimer ‘read’ laser that could only access a weak (3?0) OH transition. The instantaneous velocity field is determined by time-of-flight analysis. HTV tag lifetime comparisons between experimental results and theoretical predictions are discussed. Multiple-line tag grids are shown displaced due to an experimental air flowfield, thus providing 2-D multipoint velocity information. Due to the instantaneous nature of the HTV tag formation, HTV is particularly suitable for, but not limited to, a variety of fast flowfield applications including nonreacting base flows for high-speed projectiles and low-temperature hypersonic external or internal flows. Received: 3 July 2001 / Revised version: 6 November 2001 / Published online: 17 January 2002  相似文献   

14.
′ -hydroxy-5-methylphenyl)-benzotriazole. Received: 2 June 1998/Revised version: 31 July 1998  相似文献   

15.
′ ,4′′-tris(3-methylphenylphenylamino)triphenylamine, 1,3,5-tris[(4-diphenylaminophenyl)phenylamino]benzene, N, N-bis(3-methylphenyl)-N, N-diphenyl-[1,1-biphenyl]-4,4-diamine, and 4,4,4′′-tri(N-carbazolyl)triphenylamine, emitted bright light resulting from the exciplex formed at the solid interface between TPOB and the hole-transporting material. The exciplex formation was evidenced by the measurements of the photoluminescence spectra and lifetimes of the mixture of an equimolar amount of TPOB and each of the hole-transporting materials. Tuning of the emission color from greenish blue to orange was attained by varying the ionization potential of the hole-transporting material for the fixed electron-transporting material of TPOB. Received: 27 July 1998/Accepted: 28 July 1998  相似文献   

16.
A surface characterization study using X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) has been performed on a 5 wt.% Pd/Co3O4 methane oxidation catalyst before and after exposure to a mixture of CH4 and O2 in N2 at 250 °C for a period of 6 days. The primary peaks observed in the XPS survey spectra are the Co 2p, Pd 3d, O 1s and C 1s, along with Co, Pd and O Auger peaks. High-resolution Pd 3d spectra reveal that Pd exists on the surface predominantly as PdO, with no apparent change in chemical state during reaction. High-resolution XPS Co 2p and O 1s spectra reveal an accumulation of CoOOH and a depletion of CoO in the near-surface region during reaction. ISS analysis with intermittent 1-keV Ar+ sputtering was used to obtain depth profiles from the catalyst before and after reaction. The results indicate that the Pd/Co concentration ratio decreases with sputtering and that this ratio is larger for the as-prepared catalyst indicating that morphological changes occur during reaction. The ISS depth profile spectra obtained from the catalyst after reaction indicates the presence of an oxyhydroxide layer throughout the near-surface region. This observation is consistent with the XPS data indicating accumulation of hydroxide and oxyhydroxide species at the surface during reaction.Based on these data and the results of related studies, a reaction mechanism is proposed. In this mechanism, methane dissociatively chemisorbs to form a surface methoxy species and CoOOH. The remaining hydrogen atoms are stripped from the methoxy species leaving an active adsorbed C species which reacts with surface oxygen and a hydroxyl group to form an adsorbed bicarbonate ion which then decomposes to form CO2 and a surface hydroxyl group. These hydroxyl groups also react to form H2O and then more O2 adsorbs dissociatively at the vacant sites.  相似文献   

17.
Crystalline [CuNd2(C4O4)4(H2O)16]·2H2O constructed of complexes of trivalent neodymium and divalent copper, has been synthesized and studied by EPR. The square anion groups (C4O4) enter as bridge ligands, forming chains of neodymium ions interconnected by (C4O4)Cu(C4O4) fragments. It is found that the relaxation rate of the neodymium subsystem at room temperature significantly exceeds the exchange interaction rate between copper and neodymium ions. Under these conditions the magnetic properties of the crystal are determined by two magnetically nonequivalent chains of copper ions, which do not interact. The intrachain exchange interaction via hydrogen bonds is estimated to be ∼0.1 cm−1. As one proceeds from the high-temperature (250<T<300 K) to the low-temperature region (T<40 K), a substantial change in the nature of the interaction is revealed. An unusual magnetic structure given in a crystal is observed at low temperatures, which is determined by the presence of two magnetically nonequivalent “ribbons,” formed by the interacting copper and neodymium ions: chains of copper ions are framed on two sides by chains of neodymium ions. The magnitude of the parameter of the exchange interaction between the copper and neodymium ions is estimated as J Cu-Nd⩾0.2 cm−1. An exchange interaction between magnetically nonequivalent neodymium ions is not revealed in the EPR spectra. Fiz. Tverd. Tela (St. Petersburg) 39, 2057–2061 (November 1997)  相似文献   

18.
Cadmium sulphide nanocrystals were grown at room temperature (20 °C) under arachidic acid monolayers floating over an aqueous solution of CdCl2 inside an enclosed Langmuir-Blodgett set-up, through slow infusion of H2S gas. X-ray diffraction spectra suggest an oriented growth of the crystallites. The particle sizes were found to increase with duration of exposure to the H2S gas. Atomic force microscopy indicated that the particles were nearly circular pellets with uniform morphology throughout. In Raman spectra, the FWHM of the LO phonon was found to be large (≈20 cm-1) for all the films grown with different exposure times in H2S gas, and was found to reduce to 8 cm-1 after annealing a typical sample at 500 °C for 45 min. Received: 30 September 1998 / Accepted: 29 March 1999 / Published online: 11 August 1999  相似文献   

19.
A swept-wavelength source is created by connecting four elements in series: a femtosecond fiber laser at 1.56 μm, a non-linear fiber, a dispersive fiber and a tunable spectral bandpass filter. The 1.56-μm pulses are converted to super-continuum (1.1–2.2 μm) pulses by the non-linear fiber, and these broadband pulses are stretched and arranged into wavelength scans by the dispersive fiber. The tunable bandpass filter is used to select a portion of the super-continuum as a scan-wavelength output. A variety of scan characteristics are possible using this approach. As an example, an output with an effective linewidth of approximately 1 cm-1 is scanned from 1350–1550 nm every 20 ns. Compared to previous scanning benchmarks of approximately 1 nm/μs, such broad, rapid scans offer new capabilities: a gas sensing application is demonstrated by monitoring absorption bands of H2O, CO2, C2H2 and C2H6O at a pressure of 10 bar. Received: 5 August 2002 / Revised version: 23 September 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +1-608/265-2316, E-mail: ssanders@engr.wisc.edu  相似文献   

20.
2 +O2→H2 O in the pressure range 0.2 Torr≤ptot≤10 Torr on Pt(111) surface. At a catalyst temperature of T=700 K the equilibrium oxygen coverage θo is determined as a function of hydrogen partial pressure α. The experimentally obtained θo is modelled in a two step process considering the mass transport in the gas phase as well as the catalytic reaction on the surface. In this pressure range the mass transport in the gas phase changes from molecular flow conditions to laminar flow, inducing a strong modification of the gas phase present at the catalyst through different diffusivities of the reactants as well as through desorbing reaction products from the catalyst. It is shown that these gas phase alterations have to be taken into account for a proper modelling of the surface mechanism. Simulation calculations allow one to identify the sequential hydrogen addition reaction as the main reaction path for water production in this parameter range. Excellent agreement with previous investigations is obtained for the determined activation energies of the water-producing reaction steps equal to Ef H2O≥0.7 eV. Received: 20 September 1998 / Revised version: 15 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号