首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Realistic models of low-energy physics with two supersymmetries are constructed. Several mechanisms for providing large mirror fermion masses are given in models with gauge groups SU(3) × SU(2) × U(1) and SU(3) × SU(4) × U(1). It is found that the supersymmetry breaking scale must be significantly larger than the W-boson mass. Although none of the models is fully natural, each predicts that mirror fermions should soon be discovered. While the ordinary and mirror squarks and sleptons tend to be very heavy, some gauginos or mirror gauginos are probably light. The models offer prospects for eventual unification into finite grand unified theories.  相似文献   

2.
In a class of supersymmetric gauge models which generate a large mass scale from a supersymmetry breaking mass scale M through loop corrections, there exists generally a very light scalar particle which transforms like a singlet under SU(3)c × SU(2)L with no U(1) charge. Cosmological constraints on such a particle are so severe that an upper bound is set on possible values of supersymmetry breaking scale in this class of models as M ? 500 TeV provided that the large mass scale is 1015 GeV and the mass of the light scalar particle is generated in one-loop order. This bound holds even if the goldstino is not absorbed into the gravitino.  相似文献   

3.
We show that the coupling of the “standard” Higgs boson to majorons, that could lead to a very fast decay of the neutral Higgs scalar to invisible modes, can be bounded using astrophysical arguments. We discuss the relevance of this bound for low-energy phenomenology related to majoron production. The bound so obtained may also jeopardize the stability of the VEV hierarchy in the doublet and triplet majoron models if the mass of the top quark is less than the W mass. A similar analysis may be applied to other models which exhibit Goldstone-or pseudo-Goldstone-bosons in the spectrum.  相似文献   

4.
We study general conditions for obtaining spontaneous breaking of local supersymmetry in N = 1 supergravity coupled to supersymmetric matter. We consider in particular the coupling of N = 1 supergravity to grand unified theories like SU(5) and study the conditions which must be met in order to obtain a realistic model. Specific models are built in which local supersymmetry is broken at a scale √MWmp ~ 1010 GeV. This breaking of supersymmetry is only detected at low energies through soft terms breaking explicitly the global supersymmetry. These soft terms (scalar masses, gaugino masses and trilinear scalar couplings) are renormalized at low energies according to the renormalization group. The (mass)2 of the Higgs doublet evolve towards negative values at low energies giving rise to SU(2) × U(1) breaking as a radiative effect of local supersymmetry breaking. We finally point out the possible relevance of non-renormalizable superpotentials for the problem of fermion masses.  相似文献   

5.
Recent LHC data showed excesses of Higgs-like signals at the Higgs mass of around 125 GeV. This may indicate supersymmetric models with relatively heavy scalar fermions to enhance the Higgs mass. The desired mass spectrum is realized in the anomaly-mediated supersymmetry breaking model, in which the Wino can naturally be the lightest superparticle (LSP). We discuss possibilities for confirming such a scenario, particularly detecting signals from Wino LSP at direct detection experiments, indirect searches at neutrino telescopes and at the LHC.  相似文献   

6.
N. Sakai 《Nuclear Physics B》1984,238(2):317-332
Proton decay is studied in the supergravity model with “the hidden sector” as the source of supersymmetry breaking. Each dimension-five operator is found to accompany ΔB ≠ 0 four-scalar interactions. The Higgs fermion exchange for loop diagrams at low energies can be as important as the gauge fermion exchange, if the associated Yukawa coupling is significant as suggested by the radiatively induced SU(2) × U(1) breaking mechanism. The experimental bound for p → K0μ+ gives the lower bound of the order of 1016 GeV for the mass of the baryon-number violating Higgs particle.  相似文献   

7.
It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model. We will show that the type 1 two Higgs doublet model can also be as the effective of supersymmetry in a specific case with high scale supersymmetry breaking and gauge mediation. If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking, the Higgs spectrum is quite different. A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.  相似文献   

8.
An estimation of the Higgs boson mass is performed by numerically solving the renormalization group equations in the two loop approximation based on the condition for SU(2), U(1) gauge and the Higgs quartic coupling constants, respectively. This condition is introduced in the new scheme of our noncommutative differential geometry (NCG) for the reconstruction of the standard model. However, contrary to GUT without supersymmetry, the grand unification of coupling constants is not realized in this scheme. The physical mass of the Higgs boson depends strongly on the top quark mass through the Yukawa coupling of the top quark in the functions. The two loop effect lowers the numerical value calculated within the one loop approximation by several GeV. The Higgs boson mass varies from 150.93 GeV to 167.96 GeV corresponding to . We find GeV for GeV and GeV for GeV. Received: 16 July 1997 / Published online: 23 February 1998  相似文献   

9.
In the framework in which supersymmetry is used for understanding fermion masses rather than stabilizing the electroweak scale, we elaborate on the phenomenological analysis for the neutrino physics. A relatively large sinθ13 0.13 is naturally obtained. The model further predicts vanishingly small CP violation in neutrino oscillations. While the high scale supersymmetry generically results in a Higgs mass of about 141 GeV, our model reduces this mass to 126 GeV via introducing SU(2)L triplet fields which make the electroweak vacuum metastable (with a safe lifetime) and also contribute to neutrino masses.  相似文献   

10.
Theoretical constraints and limits on the masses of Higgs scalars in the standard electroweak model, in electroweak models with additional Higgs doublets and in various supersymmetric models are presented. In the standard model, the lower limit on the Higgs mass, based on vacuum stability arguments, is reviewed in detail, as are “upper limits” based on perturbative constraints. In most grand unified and all supersymmetric models, however, at least two doublets are needed. The masses of the various Higgs scalars in the two-doublet model are discussed and constraints on their masses are found, including the generalization of the above limits. The results are then generalized to models with more than two doublets. Finally, recent attempts at constructing models with low-energy supersymmetry are reviewed and it is shown that in many models, fairly stringent tree-level mass relations among the Higgs scalars can be found. These relations are interesting in that they do not refer to the supersymmetric partners of ordinary particles, and they are most restrictive in models in which the supersymmetry is explicitly broken, i.e., via arbitrary mass terms.  相似文献   

11.
It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model.We will show that the type 1 two Higgs doublet model can also be as the effective of supersymmetry in a specific case with high scale supersymmetry breaking and gauge mediation.If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking,the Higgs spectrum is quite different.A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.  相似文献   

12.
The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11) GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.  相似文献   

13.
We consider general constraints on baryosynthesis in low-energy SU(3) × SU(2) × U(1) theories. We find in general that phenomenologically acceptable models exist, which are unifiable at higher energies-but which all require exotic fermion content.  相似文献   

14.
We study the range of Higgs masses predicted by High-Scale Supersymmetry and by Split Supersymmetry, using the matching condition for the Higgs quartic coupling determined by the minimal field content. In the case of Split Supersymmetry, we compute for the first time the complete next-to-leading order corrections, including two-loop renormalization group equations and one loop threshold effects. These corrections reduce the predicted Higgs mass by a few GeV. We investigate the impact of the recent LHC Higgs searches on the scale of supersymmetry breaking. In particular, we show that an upper bound of 127 GeV on the Higgs mass implies an upper bound on the scale of Split Supersymmetry of about 108 GeV, while no firm conclusion can yet be drawn for High-Scale Supersymmetry.  相似文献   

15.
We assume weak, electromagnetic and strong interactions to be asymptotically divergent, and to become strong at very large energies, of the order of the Plank mass. In this picture, the “low-energy” couplings (i.e. in the 102 GeV region) must be near the infrared stable point, and this allows us to put bounds on the number of elementary fermions (quarks and leptons). Similar assumptions on the Higgs couplings give bound on the fermion and on the Higgs boson masses. We consider the cases where weak and electromagnetic interactions are described by the gauge groups SU(2) ? U(1) or SU(2)R ? U(1). The weak neutral current mixing angle is computed in both cases.  相似文献   

16.
We propose a grand unified supersymmetric theory based on SU(5) with spontaneously broken supersymmetry. The theory (really a class of theories) is completely realistic. In particular, supersymmetry partners of ordinary fermions and bosons are heavy. The model requires one fine-tuning in order to render the color triplet partners of the Higgs fields (which mediate proton decay) superheavy. This fine-tuning is stable against radiative corrections. At the tree level, the model contains two scales, the unification scale, of order 1016 GeV, and the supersymmetry breaking scale, of order 1010 GeV. The breaking of SU(2) × U(1) invariance arises as a radiative effect. The lightest of the new particles implied by supersymmetry are expected to have masses of order tens of GeV.  相似文献   

17.
We consider low-energy supersymmetric model with non-anomalous discrete R-symmetry. To make the R-symmetry non-anomalous, we add new particles to the particle content of the minimal supersymmetric standard model (MSSM). Those new particles may couple to the Higgs boson, resulting in a significant enhancement of the lightest Higgs mass. We show that, in such a model, the lightest Higgs mass can be much larger than the MSSM upper bound; the lightest Higgs mass as large as 140 GeV (or larger) becomes possible.  相似文献   

18.
We study the properties of heavy fermions in the vector-like representation of the electroweak gauge group SU(2)W×U(1)Y with Yukawa couplings to the standard model Higgs boson. Applying the renormalization group analysis, we discuss the effects of heavy fermions to the vacuum stability bound and the triviality bound on the mass of the Higgs boson. We also discuss the interesting possibility that the Higgs particle is composed of the top quark and heavy fermions. The bound on the composite Higgs mass is estimated using the method of Bardeen, Hill and Lindner (Phys. Rev. D 41 (1990) 1647), 150 GeV ≤ mH ≤ 450 GeV.  相似文献   

19.
We review the recent discovery of the Higgs like particle at ~ 125 GeV and its implications for particle physics models. Specifically the implications of the relatively high Higgs mass for the discovery of supersymmetry are discussed. Several related topics such as naturalness and supersymmetry, dark matter and unification are also discussed.  相似文献   

20.
These final results from DELPHI searches for the Standard Model (SM) Higgs boson, together with benchmark scans of the Minimal Supersymmetric Standard Model (MSSM) neutral Higgs bosons, used data taken at centre-of-mass energies between 200 and 209 GeV with a total integrated luminosity of 224 pb-1. The data from 192 to 202 GeV are reanalysed with improved b-tagging for MSSM final states decaying to four b-quarks. The 95% confidence level lower mass bound on the Standard Model Higgs boson is 114.1 GeV/c 2. Limits are also given on the lightest scalar and pseudo-scalar Higgs bosons of the MSSM.Received: 7 March 2003, Revised: 30 September 2003, Published online: 3 December 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号