首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

2.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

3.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

4.
Single crystals of SrFeO3−δ iron(IV) oxides (δ?0.05) have been investigated by selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The crystals are characterized by a coherent intergrowth of multiple twinned tetragonal and cubic domains. According to Mössbauer spectroscopy and XRD, the cubic domains are the main component, particularly for SrFeO3.00(2). The domain structure transforms significantly when performing HRTEM at room temperature. In a first and very rapid step of transformation the amount of the tetragonal domains increases dramatically. In a subsequent step the sizes of the tetragonal domains are changed via cubic intermediates. All in-situ transformations can be suppressed at low temperature where the typical SAED patterns of the cubic SrFeO3 are observed. It is concluded that low temperature experiments are useful for an unambiguous characterization of the crystal structure and microstructure of high-valent transition metal oxides.  相似文献   

5.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

6.
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement.  相似文献   

7.
Single-phase perovskite structure Pb1−xBaxTiO3 thin films (x=0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO2/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively.  相似文献   

8.
Cd1−xMnxS nano-crystalline films (0 ≤ x ≤ 0.5) were formed on glass substrates by thermal evaporation technique at room temperature (300 K). AFM studies showed that all the films were in nano-crystalline form with the grain size varying in the range between 36 and 58 nm and exhibited hexagonal structure of the host material. The lattice parameters varied linearly with composition, following Vegard's law in the entire composition range. The nanohardness and Young's modulus decreased sharply with ‘Mn’ content upto x = 0.3 and increased with high Mn content.  相似文献   

9.
The magnetic and electrical properties of the Al-doped polycrystalline spinels ZnxCryAlzSe4 (0.13≤z≤0.55) with the antiferromagnetic (AFM) order and semiconducting behavior were investigated. A complex antiferromagnetic structure below a Néel temperature TN≈23 K for the samples with z up to 0.4 contrasting with the strong ferromagnetic (FM) interactions evidenced by a large positive Curie-Weiss temperature θCW decreasing from 62.2 K for z=0.13 to 37.5 K for z=0.55 was observed. Detailed investigations revealed a divergence between the zero-field-cooling (ZFC) and field-cooling (FC) susceptibilities at temperature less than TN suggesting bond frustration due to competing ferromagnetic and antiferromagnetic exchange interactions in the compositional range 0.13≤z≤0.4. Meanwhile, for z=0.55 a spin-glass-like behavior of cluster type with randomly oriented magnetic moments is observed as the ZFC-FC splitting goes up to the freezing temperature Tf=11.5 K and the critical fields connected both with a transformation of the antiferromagnetic spin spiral via conical magnetic structure into ferromagnetic phase disappear.  相似文献   

10.
(2MnX)x(CuInX2)1−x with X=S and Se were prepared by solid state reaction from the end members α-MnS, β-MnS and CuInS2 in the range 0<x≤0.2 (≤0.6 for β-MnS) as well as MnSe and CuInSe2 in the range 0<x≤0.1. Mixed crystals with 0≤x≤0.1 crystallize in the tetragonal chalcopyrite type structure, (2α-MnS)x(CuInS2)1−x samples with 0.1<x≤0.2 and (2β-MnS)x(CuInS2)1−x samples up to x=0.6 consist of two phases, occuring as tetragonal domains (x∼0.1 for X=S) within a cubic matrix with zinc-blende type structure (x∼0.4 for X=S), indicating a miscibility gap. For tetragonal single phase samples the band gap energy, the lattice constants and the anion parameter have been determined. The first and the latter ones show a different composition dependent behaviour caused by the modification of the MnS (α-MnS with NaCl type structure, β-MnS with zinc-blende type structure) used during the synthesis. Additionally a CuMnxIn1−xS2 powder sample, in which Mn substitutes the MIII site, was investigated. The SQUID measurements revealed a well-distinct magnetic transition between 15 and 16 K as well as ferromagnetic-like hysteresis loops pronounced for temperatures below the transition temperature. Below this temperature a clear splitting between the zero field cooling (ZFC) and the field cooling (FC) curves indicate to the existence of a long-range magnetic ordering phenomenon. This behaviour was not found in the other samples were Mn substitutes both sites MI as well as MIII.  相似文献   

11.
This paper reports the measurement of space charge limited conduction (SCLC) on the fabricated thin films of Se95−xSxZn5 (0.2≤x≤10) in temperature range 313–353 K for the first time. At high electric fields (E∼104 V/cm), the current could be fitted into the theory of space charge limited conduction, in case of uniform distribution of localized states in mobility gap. The homogeneity and surface morphology of thin films were assessed by scanning electron microscopy. The crystalline nature of the thin films was confirmed by powder XRD and the crystallite size was calculated using Scherer's formula. The crystallite size and density of localized states were found to increase with the increase of sulfur concentration. DC conductivity and activation energy were calculated and found to decrease and increase respectively, with the increase of sulfur concentration.  相似文献   

12.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

13.
Samples of CeIV-substituted bismuth vanadate, formulated as Bi4CexV2−xO11−(x/2)−δ; 0≤x≤0.30, were synthesized by solid-state reactions. The phase structure and electrical conductivity were investigated using X-ray powder diffraction, FT-IR, differential thermal analysis and AC impedance spectroscopy. For a low composition range, two phase transitions, α↔β and β↔γ, were exhibited in which the system mimics in most events the parent compound. Impedance analysis evidenced no relationship between the blocking effect of charge carriers and structural changes at ambient temperatures. However, the temperature dependence of conductivity was correlated with the stability region of various phases within the system.  相似文献   

14.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

15.
Using composition-spread technique, we have grown metastable Mg1−xCaxO solid solution films on ZnO layers by pulsed laser deposition. All the films exhibited (1 1 1) oriented cubic phase. Despite a large miscibility gap, no phase separation took place at growth temperatures up to 700 °C, whereas an optimal growth temperature was found at 400 °C in terms of the crystallinity. The composition-spread films were characterized by X-ray diffraction mapping technique. Both lattice parameters and diffraction intensity increased with increasing the CaO composition. The present isovalent heterointerfaces realized the perfect lattice-matching by properly adjusting the CaO composition, leading to particular interest for ZnO based field effect transistors.  相似文献   

16.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

17.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

18.
Sintered ceramic powders of calcium-doped lead titanate [Pb1−xCaxTiO3] ceramics with different Ca dopant concentration in the range (x=0-0.35) have been prepared using a sol-gel chemical route. The sol-gel technique is known to offer better purity and homogeneity, and can yield stoichiometric powders with improved properties at relatively lower processing temperature in comparison to conventional solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy studies have been carried out to identify the crystallographic structure and phase formation. The infrared absorption spectra in the mid-IR region (400-4000 cm−1) show the band corresponding to the Ti-O bond at ∼576 cm−1 and is found to shift to a higher wave number 592 cm−1 with increasing Ca content. The dielectric properties as a function of frequency, and phase transition studies on sintered ceramic Pb0.65Ca0.35TiO3 has been investigated in detail over a wide temperature range 30-600 °C and the results are discussed.  相似文献   

19.
Fine powders of NiCuZn ferrite with composition Ni(0.7−x)CuxZn0.3Fe2O4 (where x=0, 0.2, 0.4 and 0.6) were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single-phase cubic spinel structure. The grain size was estimated by SEM micrograph which increases with Cu content. Dielectric constant (?) and loss tangent (tan δ) were measured as a function of frequency. The ? and tan δ show a decreasing trend with increase of frequency for all the samples. The DC resistivity was measured as a function of temperature. The temperature-dependent DC resistivity measurements show that the room-temperature DC resistivity of NiCuZn ferrite with x=0.2 is of the order of 109 Ω cm. The AC conductivity (σAC) was studied as a function of frequency. The hysteresis data indicate that the maximum saturation magnetization of 38.66 emu/g is obtained for the composition with x=0.2.  相似文献   

20.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号