首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of the discrete transfer method (DTM) has been extended to the analysis of radiative heat transfer in a variable refractive index participating medium. To validate the DTM formulation, radiative heat transfer in an absorbing, emitting and isotropically scattering planar medium was considered. The participating medium was assumed to be in radiative equilibrium. For both constant and variable refractive indices of the medium, the DTM results were compared with those available in the literature. The DTM was found to provide accurate results.  相似文献   

2.
To avoid the complicated and time-consuming computation of curved ray trajectories, a discontinuous finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two cases of radiative heat transfer in two-dimensional rectangular gray semitransparent graded index medium enclosed by opaque boundary are examined to verify this discontinuous finite element method. Special layered and radial graded index distributions are considered. The predicted dimensionless net radiative heat fluxes and dimensionless temperature distributions are determined by the discontinuous finite element method and compared with the results obtained by the curved Monte Carlo method in references. The results show that the discontinuous finite element method has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium.  相似文献   

3.
Both Galerkin finite element method (GFEM) and least squares finite element method (LSFEM) are developed and their performances are compared for solving the radiative transfer equation of graded index medium in cylindrical coordinate system (RTEGC). The angular redistribution term of the RTEGC is discretized by finite difference approach and after angular discretization the RTEGC is formulated into a discrete-ordinates form, which is then discretized based on Galerkin or least squares finite element approach. To overcome the RTEGC-led numerical singularity at the origin of cylindrical coordinate system, a pole condition is proposed as a special mathematical boundary condition. Compared with the GFEM, the LSFEM has very good numerical properties and can effectively mitigate the nonphysical oscillation appeared in the GFEM solutions. Various problems of both axisymmetry and nonaxisymmetry, and with medium of uniform refractive index distribution or graded refractive index distribution are tested. The results show that both the finite element approaches have good accuracy to predict the radiative heat transfer in semitransparent graded index cylindrical medium, while the LSFEM has better numerical stability.  相似文献   

4.
In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems.  相似文献   

5.
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium.  相似文献   

6.
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.  相似文献   

7.
The numerical simulation method of radiative entropy generation in participating media presented by Caldas and Semiao [Entropy generation through radiative transfer in participating media: analysis and numerical computation. JQSRT 2005;96:423-37] is extended to analyze the radiative entropy generation in the enclosures filled with semitransparent media. A discrete ordinates method is used to solve radiative transfer equation and radiative entropy generation. Two different examples are employed to verify the numerical simulation method of radiative entropy generation in the enclosure. Numerical results of dimensionless radiative entropy generation of enclosure are identical to that of entire thermodynamics analysis for the enclosure system. This numerical simulation method can be used in the entropy generation analysis of high-temperature systems such as boilers and furnaces, in which radiation is the dominant mode of heat transfer.  相似文献   

8.
To avoid the complicated and time-consuming computation of curved ray trajectories, a least-squares finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Four cases of radiative heat transfer are examined to verify this least-squares finite element method. Linear and nonlinear graded index are considered. The predicted dimensionless net radiative heat fluxes are determined by the least-squares finite element method and compared with the results obtained by other methods. The results show that the least-squares finite element method is stable and has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium, while the Galerkin finite element method sometimes suffers from nonphysical oscillations.  相似文献   

9.
This paper extends the DRESOR (Distribution of Ratios of Energy Scattered by the medium Or Reflected by the boundary surface) method to radiative transfer in a variable refractive index medium. In this method, the intensity is obtained from the source term along the curved integration paths determined only by the variable refractive index, and the DRESOR values are calculated by the Monte Carlo method in which the propagation of the energy bundles are affected by Snell's law. With given temperatures on the black boundaries of a one-dimensional medium, the temperature distribution inside the medium with a variable scattering property is calculated under the condition of radiative equilibrium. It is shown that the DRESOR method has a good accuracy in the cases studied. For an isotropic-scattering medium with the same optical thickness, the scattering albedo has no effect on the temperature distribution, which can be obtained from the general equations and can be seen as an extension of what exists for a constant refractive index; however, the different refractive index causes obvious changes in the temperatures inside the medium. The effect of anisotropic scattering on the temperature distribution cannot be ignored, although it is still weaker than the effect caused by variation in the refractive index.  相似文献   

10.
The ray-tracing technique has the main difficulty in solving radiative transfer in the medium with variable spatial refractive index. Recently, three methods have been developed for the application of the ray-tracing technique in those medium. To compare and discuss the numerical characteristics of those methods, a semitransparent slab with variable spatial refractive index is taken as an example, and the reflectivity and the transmissivity of the slab are computed by the curved ray-tracing method, the multi-layer approach, and the discrete curved ray-tracing method, respectively. As the result, it is shown that, the discrete curved ray-tracing method gives the result with good accuracy and convergence characteristics than the multi-layer approach. Due to accounting physically inexistent reflection on the interface between sublayers, the multi-layer approach converges slowly.  相似文献   

11.
This paper deals with a theoretical and an experimental study allowing the measurement of the radiative and the conductive properties of semitransparent materials. The method consists of applying a crenel heat flux on the front face of a semitransparent sample and recording the temperature at the rear face using an open thermocouple junction.Parameter identification is performed by the minimization of the ordinary least-squares function comparing the measured and the calculated temperatures. This later is obtained from the thermal model describing the heat transfer by conduction and radiation in the medium. This model is built by the thermal quadrupole formalism.Measurements are reported on commercial glasses and plexiglass samples, and the used iterative algorithm is based on the Gauss-Newton method.  相似文献   

12.
Both thermal emission and volumetric absorption characteristics of a graded index semitransparent medium layer are investigated numerically. The semitransparent and specular emerging surface of the medium layer is parallel to an opaque and diffuse substrate wall. Monochromatic spectrum or gray medium is considered in the analysis. A pseudo-source adding method is combined with a ray-splitting and -tracing technique to solve the radiative transfer in the medium. As examples, constant and linear refractive index distributions are examined for an isothermal layer and the medium layer with a linear temperature distribution. Directional and hemispherical thermal emissions from the emerging surface as well as the volumetric absorption to the diffuse and parallel incidence of radiation are investigated, respectively. The results show that the refractive index distribution has significant influences on thermal emission and volumetric absorption of a semitransparent medium layer. The optical thickness, temperature distribution and the reflectivity of substrate wall react in combination with the refractive index distribution.  相似文献   

13.
An inversion scheme based on tomographic reconstruction of flame emission spectra has been developed for nonintrusive characterization of soot temperature and volume fraction fields within an optically thin axisymmetric flame by extracting characteristic information on soot refractive index from spectral gradients of emission spectra. Its performance is assessed by providing input data obtained from intensities simulated by a direct code based on experimental data for a flame available in the literature. Proposed method was found to be especially powerful in the near-infrared range for accurate prediction of flame properties where spectral variation of optical constants is significant.  相似文献   

14.
In this paper, a numerical method is presented for the study of the radiative transfer in a two-dimensional graded index semitransparent medium with diffuse gray boundaries. The numerical method is a combination of the linear refractive index bar model, the discrete curved ray-tracing technique and the pseudo source adding method (LRIB-CRTP). In the traditional ray-tracing technique, it is difficult to deal with the diffuse gray boundary while solving the radiative transfer. Using the pseudo source adding method, the diffuse gray boundary of the medium can be treated as a black boundary. We have also studied the radiative equilibrium temperature field of the medium and analyzed the influence of some parameters involved. The results show that the directional discrete number is important for the medium having a large absorption coefficient. The results also show that the refractive index distribution greatly influences the temperature field, whereas the linear absorption coefficient distribution has little influence on the temperature field.  相似文献   

15.
A meshless local Petrov-Galerkin (MLPG) approach is employed for solving the coupled radiative and conductive heat transfer in a one-dimensional slab with graded index media. The angular distribution term in discrete ordinate equation of radiative transfer within a one-dimensional graded index slab is discretized by a step scheme, and the meshless approach for radiative transfer is based on the discrete ordinate equation. A moving least-squares approximation is used to construct the shape function. Two particular test cases for coupled radiative and conductive heat transfer within a one-dimensional graded index slab are examined to verify this new approximate method. The temperatures and the radiative heat fluxes are obtained. The results are compared with the other benchmark approximate solutions. By comparison, the results show that the MLPG approach has a good accuracy in solving the coupled radiative and conductive heat transfer in one-dimensional graded index media.  相似文献   

16.
The refractive index profile of an axially symmetric fiber preform is determined by using the transport of intensity equation. In this method the preform is immersed in an index-matching liquid, and a collimated light beam impinges on it laterally. The intensity distributions of the transmitted light are measured on two close parallel planes inside the preform core. From the recorded intensity distributions, the deflection function is calculated by the transport of intensity equation. The refractive index profile is obtained by means of Abel inversion. Also, for comparison, the refractive index profile of the preform is measured by the focusing method and the results are in agreement with less than 3% error.  相似文献   

17.
Due to the non-gray of gas radiation, the total emissivity differs from the total absorptivity. Therefore, in gray analysis, the equivalent absorption coefficient is not equal to the equivalent emission coefficient. Based on this idea, in this paper, a concept of equivalent absorption coefficient and equivalent emission coefficients is presented for gray analysis of gas radiative heat transfer. The equivalent emission coefficients are calculated by Leckner's formula and the equivalent absorption coefficients are estimated by inverse analysis. A one-dimensional gas radiation is taken as an example to show the efficiency of this concept. The results show that the concept of equivalent absorption and emission coefficients is feasible. It is necessary to use both the equivalent absorption coefficient and the equivalent emission coefficient for gray analysis.  相似文献   

18.
The Zygo interferometer for measuring refractive index of liquids such as heavy water is presented. The accuracy of measurement in the refractive index of liquids is found to be ±0.0002 in the Zygo interferometer. An application of Zygo interferometer for heavy water analysis is also presented. The interferometer is found to be useful for determining the percentage purity of heavy water with an accuracy of ±5% in the purity range of 0–100%.  相似文献   

19.
In present paper, a modified factor of extinction coefficient and an equivalent albedo of scattering were defined taking into account anisotropic scattering in fibrous insulation. An inverse conduction-radiation analysis in an absorbing, emitting and scattering medium was conducted for the simultaneous estimation of the conductive and radiative properties using the experimentally measured temperature responses for external temperatures up to 980 K. The estimated properties were validated by comparing the predicted and measured results under transient and steady-state condition. It was found that the calculated results corresponded well with the experimental data within an average of 3.1% under transient condition and 9.8% under steady-state condition. This confirms the good behavior of the model and the validity of results.  相似文献   

20.
《Current Applied Physics》2020,20(9):1073-1079
We study emissivity (ε)-dependent radiative heat transfer phenomena in remote and contact configurations. To demonstrate the emissivity-dependent radiative heating mode in a remote configuration, we fabricated miniature greenhouses covered with low (0.34)- and high-ε (0.86) polyethylene films and monitored temperatures on the floors, insides, and covers of the greenhouses during 24 h. The high-ε greenhouse yielded a 9-°C increase in floor temperature relative to the low-ε greenhouse at a one-sun solar irradiance because the high-ε film effectively trapped floor radiation. In contrast, the cover temperature remained lower in the high-ε greenhouse due to intensified radiation released from the high-ε film. This self-cooling effect was more evident when an emissive film was in physical contact with an object. While bare copper heated up to 55 °C, a high-ε film coated copper substrate was kept cooler by 4 and 2 °C compared with the bare and low-ε film coated copper samples, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号