首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between ganglioside GM1 (GM1) and --dipalmitoylphosphatidylcholine (DPPC) in mixed monolayers was investigated using surface pressure measurements and atomic force microscopy (AFM), and the effects of GM1, surface pressure and temperature on the properties of the membranes were examined. Mixed GM1/DPPC monolayers were deposited on mica using the Langmuir–Blodgett (LB) technique for AFM. GM1 and DPPC were miscible below the 0.2 mole fraction of GM1 and there was attractive interaction between GM1 and DPPC. The AFM images for the GM1/DPPC monolayers (XGM1 < 0.2) at 30 mN m−1 and 25 °C indicated a percolation pattern which means a micro phase separation: namely, the mixed film composed of GM1 and DPPC phase-separated from the DPPC liquid-condensed film. The AFM images for the mixed monolayers at 33 mN m−1 indicated a specific morphology when the surface pressure was varied from 30 to 40 mN m−1. The percolation pattern in the AFM image at 25 °C came to be destroyed with increasing temperature and completely disappeared at 45 °C. The change in the morphology of mixed GM1/DPPC monolayers on varying the surface pressure and temperature is thought to be related to signal transduction and a preventive mechanism against viral infections in the human body.  相似文献   

2.
In this study, we examined the adsorption of cytochrome c (cyt c) on monolayers and liposomes formed from (i) pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), or cardiolipin (CL) and on (ii) the more thermodynamically stable binary mixtures of POPE/CL (0.8:0.2 mol/mol) and POPC/CL (0.6:0.4 mol/mol). Constant surface pressure experiments showed that the maximum and minimum interactions occurred in the pure CL (anionic phospholipid) and the pure POPE (zwitterion) monolayers, respectively. Observation by atomic force microscopy (AFM) of the images of Langmuir-Blodgett (LB) films extracted at 30 mN m-1 suggests that the different interactions of cyt c with POPE/CL and the POPC/CL monolayers could be due to lateral phase separation occurring in the POPE/CL mixture. The competition between 8-anilino-1-naphthalene sulfonate (ANS) and cyt c for the same binding sites in liposomes that have identical nominal compositions with respect to those of the monolayers was used to obtain binding parameters. In agreement with the monolayer experiments, the most binding was observed in POPE/CL liposomes. All of our observations strongly support the existence of selective adsorption of cyt c on CL, which is modulated differently by different neutral phospholipids (POPE and POPC).  相似文献   

3.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

4.
Sum-frequency vibrational spectroscopy, with the help of surface pressure-area (π-A) isotherm, was used to study lipid Langmuir monolayers composed of molecules with positively and negatively charged headgroups as well as a 1:1 neutral mixture of the two. The spectral profiles of the CH(x) stretch vibrations are similar for all monolayers in the liquid-condensed (LC) phase. They suggest a monolayer structure of closely packed alkyl chains that are nearly all-trans and well oriented along the surface normal. In the liquid-expanded (LE) phase, the spectra of all monolayers appear characteristic of loosely packed chains with significant gauche defects. The OH stretch spectra of interfacial water for both positively and negatively charged monolayers are significantly enhanced in comparison with a neutral water interface, but the phase measurement of SFVS indicates that OH in the two cases points toward the bulk and the interface, respectively. The enhancement results mainly from surface-field-induced polar ordering of interfacial water molecules. For a charge-neutral monolayer composed of an equal number of positively and negatively charged lipid molecules, no such enhancement is observed. This mixed monolayer exhibits a wide range of LC/LE coexistence region extended to very low surface pressure and its CH(x) spectral profile in the coexistence region resembles that of the LC phase. This result suggests that in the LC/LE coexistence region, the mixed monolayer consists of coexisting LC and LE patches in which oppositely charged lipid molecules are homogeneously mixed and dispersed.  相似文献   

5.
The penetration of bovine serum albumin (BSA) into dipalmitoylphosphatidylglycerol (DPPG) monolayers was observed using atomic force microscopy (AFM) and surface pressure measurements. The effects of surface pressure, amount of BSA and the addition of ganglioside GM1 (GM1) were investigated. The surface pressure of the DPPG monolayer was increased by the penetration of BSA, and the increase in surface pressure was greater in the liquid-expanded film than that in the liquid-condensed film. The AFM images indicated that BSA penetrated into the DPPG monolayer. The amount of BSA that penetrated into the DPPG monolayer increased with time and with the amount of BSA added. On the contrary, the AFM image showed that BSA penetration into the mixed DPPG/GM1 (9 : 1) monolayer scarcely occurred. GM1 inhibited the penetration of BSA into the DPPG monolayer.  相似文献   

6.
The intricate interplay between the bilayer and monolayer properties of phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) phospholipids, in relation to their polar headgroup properties, and the effects of chain permutations on those polar headgroup properties have been demonstrated for the first time with a set of time-independent bilayer-monolayer equilibria studies. Bilayer and monolayer phase behavior for PE is quite different than that observed for PC and PG. This difference is attributed to the characteristic biophysical PE polar headgroup property of favorable intermolecular hydrogen-bonding and electrostatic interactions in both the bilayer and monolayer states. This characteristic hydrogen-bonding ability of the PE polar headgroup is reflected in the condensed nature of PE monolayers and a decrease in equilibrium monolayer collapse pressure at temperatures below the monolayer critical temperature, T(c) (whether above or below the monolayer triple point temperature, T(t)). This interesting phenomena is compared to equilibrated PC and PG monolayers which collapse to form bilayers at 45 mN/m at temperatures both above and below monolayer T(c). Additionally, it has been demonstrated by measurements of the equilibrium spreading pressure, pie, that at temperatures above the bilayer main gel-to-liquid-crystalline phase-transition temperature, T(m), all liquid-crystalline phospholipid bilayers spread to form monolayers with pie around 45 mN/m, and spread liquid-expanded equilibrated monolayers collapse at 45 mN/m to form their respective thermodynamically stable liquid-crystalline bilayers. At temperatures below bilayer T(m), PC and PG gel bilayers exhibit a drop in bilayer pi(e) values < or =0.2 mN/m forming gaseous monolayers, whereas the value of pic of spread monolayers remains around 45 mN/m. This suggests that spread equilibrated PC and PG monolayers collapse to a metastable liquid-crystalline bilayer structure at temperatures below bilayer T(m) (where the thermodynamically stable bilayer liquid-crystalline phase does not exist) and with a surface pressure of 45 mN/m, a surface chemical property characteristically observed at temperatures above bilayer T(m) (monolayer T(c)). In contrast, PE gel bilayers, which exist at temperatures below bilayer T(m) but above bilayer T(s) (bilayer crystal-to-gel phase-transition temperature), exhibit gel bilayer spreading to form equilibrated monolayers with intermediate pie values in the range of 30-40 mN/m; however, bilayer pie and monolayer pic values remain equal in value to one another. Contrastingly, at temperatures below bilayer T(s), PE crystalline bilayers exhibit bilayer pie values < or =0.2 mN/m forming equilibrated gaseous monolayers, whereas spread monolayers collapse at a value of pic remaining around 30 mN/m, indicative of metastable gel bilayer formation.  相似文献   

7.
We report a thermodynamic study of the effect of calcium on the mixing properties at the air-water interface of two phospholipids that mimic the inner membrane of Escherichia coli: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. In this study, pure POPE and POPG monolayers and three mixed monolayers, χ(POPE) = 0.25, 0.5, and 0.75, were analyzed. We show that for χ(POPE) = 0.75, the values of the Gibbs energy of mixing were negative, which implies attractive interactions. We used atomic force microscopy to study the structural properties of Langmuir-Blodgett monolayers that were transferred onto mica substrate at lateral surface pressures of 25 and 30 mN m(-1). The topographic images of pure POPE and POPG monolayers exhibited two domains of differing size and morphology, showing a step height difference within the range expected for liquid-condensed and liquid-expanded phases. The images captured for χ(POPE) = 0.25 were featureless, and for χ(POPE) = 0.5 small microdomains were observed. The composition that mimics quantitatively the proportions found in the inner membrane of E. coli , χ(POPE) = 0.75, showed large liquid condensed domains in the liquid expanded phase. The extension of each domain was quantitatively analyzed. Because calcium is used in the formation of supported bilayers of negatively charged phospholipids, the possible influence of the nanostructure of the apical on the distal monolayer is discussed.  相似文献   

8.
In this work we have analyzed the topography by atomic force microscopy (AFM) of dipalmitoyl-phosphatidyl-choline (DPPC) monolayers previously spread at the air–water interface and penetrated by β-casein. AFM images of β-casein–DPPC monolayers were taken from Langmuir–Blodgett films deposited onto hydrophilic mica substrates at different initial surface pressures (πi) and after the compression of the mixed films. The monolayer topography depends on the initial structure of the phospholipid:liquid expanded (LE) at 3 mN/m, coexistence between LE and liquid condensed (LC) structures at 7 mN/m, at the end of the LE–LC transition at 10 mN/m, and with a LC structure at 15 mN/m. The area occupied by DPPC domains in the mixed film increases with the πi value, especially for DPPC with a LC structure at 15 mN/m. At this surface pressure the thickness of the film is at a maximum. After the film compression at 25 mN/m, which is above the equilibrium spreading pressure of β-casein (), this protein is displaced from the interface by DPPC and the topography of the mixed monolayer depends on the initial structure of the DPPC monolayer. A notable feature of the topography of these mixed monolayers is the presence of multilayers of β-casein and DPPC of high thickness (50–70 nm) at the lower πi values. Although the film is dominated by DPPC at the highest surface pressures (at 25 mN/m), β-casein is not displaced totally from the interface and coexists as β-casein collapsed domains within the network of the DPPC structure.  相似文献   

9.
In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli <50 mN/m. AFM images showed that the smooth surface topography of surfactant lipid monolayers was altered with addition of MA. Aggregates with diverse heights of at least two layer thicknesses were found in the presence of mycolic acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis.  相似文献   

10.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

11.
Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain.  相似文献   

12.
Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer.  相似文献   

13.
Molecular interactions between mycobacterial cell wall lipid, cord factor (CF) and the abundant surfactant lipid, dipalmitoylphosphatidylcholine (DPPC) were investigated using Langmuir monolayers at physiological temperatures (37 degrees C). Surface topography of the films was visualized by atomic force microscopy (AFM). Thermodynamic behavior of the mixed monolayers was evaluated by investigating the molecular area excess, excess Gibbs free energy of mixing and maximum compressibility modulus (SCM(max)). Cord factor formed immiscible and thermodynamically unstable monolayers with DPPC. Monolayer presence of cord factor altered the physical state of DPPC monolayers from liquid condensed to liquid expanded with the lowering of SCM(max) from 160 to 40 mN/m, respectively. AFM imaging exhibited smooth homogenous surface topography of DPPC films which in the presence of cord factor was markedly altered with the appearance of aggregates and increased surface roughness. The results highlight the capacity of cord factor to disturb DPPC monolayer organization and structure. Interfacial presence of cord factor results in DPPC monolayer fluidization. Lung surfactant function is attributed to its ability to form well packed low compressibility films. Such molecular interactions suggest a dysfunction of lung surfactant in pulmonary tuberculosis due to surfactant monolayer fluidization.  相似文献   

14.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

15.
The effect of polysilicic acid on mixed monolayers of hemoglobin and stearoyl erythroceramide used as cell membrane models has been studied. The presence of the sphingolipid at the interface stabilizes the hemoglobin monolayer, hindering expulsion of its residues from the surface when the collapse pressure (ca. 23 mN/m) is reached. The interaction between the components of the mixed film results in non-additivity of their molecular areas to a degree depending on film composition and substrate pH. The presence of polysilicic acid in the substrate increases the miscibility of the components in the mixed monolayer as a result of ionic interaction between the silicic acid and the protein.  相似文献   

16.
We report our studies on the mixed Langmuir monolayer of mesogenic molecules, p-(ethoxy)-p-phenylazo phenyl hexanoate (EPPH) and octyl cyano biphenyl (8CB), employing the techniques of surface manometry and Brewster angle microscopy. Our studies show that the mixed monolayer exhibits higher collapse pressures for certain mole fractions of EPPH in 8CB as compared to individual monolayers. Also, a considerable reduction in the area per molecule is seen in the mixed monolayer, indicating a condensed phase. We have also studied the photostability of the mixed monolayer at different initial surface pressures. The mixed monolayer, under alternate cycles of UV and visible illumination, exhibits changes in surface pressures. This is due to the photoinduced transformation of EPPH isomers in the mixed monolayer. Our in-situ Brewster angle microscope studies for 0.5 mole fraction of EPPH in 8CB show a phase separation in the UV and a miscible phase in the visible, at low surface pressures ( approximately 5 mN/m). At higher surface pressures ( approximately 10 mN/m), under UV illumination, we find a phase separation which does not revert to a miscible phase under visible illumination.  相似文献   

17.
Dipalmitoyl phosphatidylcholine (DPPC), one of the main constituents of lung surfactant is mainly responsible for reduction of surface tension to near 0 mN/m during expiration, resisting alveolar collapse. Other unsaturated phospholipids like palmitoyloleoyl phosphatidylglycerol (PG), palmitoyloleoyl phosphatidylcholine (POPC) and neutral lipids help in adsorption of lung surfactant to the air-aqueous interface. Lung surfactant lipids may interact with plasma proteins and hematological agents flooding the alveoli in diseased states. In this study, we evaluated the effects of albumin and erythrocyte membranes on spread films of DPPC alone and mixtures of DPPC with each of PG, POPC, palmitoyloleoyl phosphatidylethanolamine (PE), cholesterol (CHOL) and palmitic acid (PA) in 9:1 molar ratios. Surface tension-area isotherms were recorded using a Langmuir-Blodgett (LB) trough at 37 degrees C with 0.9% saline as the sub-phase. In the presence of erythrocyte membranes, DPPC and DPPC+PA monolayers reached minimum surface tensions of 7.3+/-0.9 and 9.6+/-1.4 mN/m, respectively. Other lipid combinations reached significantly higher minimum surface tensions >18 mN/m in presence of membranes (Newman Keul's test, p<0.05). The relative susceptibility to membrane inhibition was [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)=(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)]. The differential response was more pronounced in case of albumin with DPPC and DPPC+PA monolayers reaching minimum surface tensions less than 2.4 mN/m in presence of albumin, whereas DPPC+PG and DPPC+POPC reached minimum surface tensions of around 20 mN/m in presence of albumin. Descending order of susceptibility of the spread monolayers of lipid mixtures to albumin destabilization was as follows: [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)]>[(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)] The increase in minimum surface tension in presence of albumin and erythrocyte membranes was accompanied by sudden increases in compressibility at surface tensions of 15-30 mN/m. This suggests a monolayer destabilization and could be indicative of phase transitions in the mixed lipid films due to the presence of the hydrophobic constituents of erythrocyte membranes.  相似文献   

18.
Microcin J25 forms stable monolayers at the air-water interface showing a collapse at a surface pressure of 5 mN/m, 220 mV of surface potential, and 6 fV per squared centimeter of surface potential per unit of molecular surface density. The adsorption of microcin J25 from the subphase at clean interfaces leads to a rise of 10 mN/m in surface pressure and a surface potential of 220 mV. From these data microcin appears to be a poor surfactant per se. Nevertheless, the interaction with the lipid monolayer further increase the stability of the peptide at the interface depending on the mode in which the monolayer is formed. Spreading with egg PC leads to nonideal mixing up to 7 mN/m, with hyperpolarization and expansion of components at the interface, with a small excess free energy of mixing caused by favorable contributions to entropy due to molecular area expansion compensating for the unfavorable enthalpy changes arising from repulsive dipolar interactions. Above 7 mN/m microcin is squeezed out, leaving a film of pure phospholipid. Nevertheless, the presence of lipid at 10 and 20 mN/m stabilize further microcin at the interface and adsorption from the subphase proceeds up to 30 mN/m, equivalent to surface pressure in bilayers.  相似文献   

19.
In this paper, atomic force microscopy (AFM) has been used to investigate the morphology of monolayers of the amphiphilic rod-coil diblock molecule (EO7OPV) containing oligo(phenylene vinylene) dimer (OPV) and poly(ethylene oxide) (PEO) as well as the morphology of mixed monolayers of EO7OPV and palmitic acid (PA) deposited onto mica by the Langmuir-Blodgett technique. At surface pressures higher than 3 mN/m, EO7OPV forms regular-shaped aggregates with a monomolecular layer structure, where the hydrophilic PEO blocks are adsorbed onto the mica substrate and the hydrophobic OPV blocks form an ordered crystalline OPV layer on the top of the PEO layer through the strong pi-pi stacking interaction. In the mixed LB monolayers of EO7OPV and PA, the phase separation occurs. At a certain mixed ratio, EO7OPV molecules form rodlike domains with regular shape and uniform size at surface pressures higher than 3 mN/m. With the increase of the molar fraction of PA, the rodlike domains consisting of EO7OPV are elongated. The length of the rodlike domains can be tuned easily in a large range by altering the molar ratio of EO7OPV and PA. In addition, the rodlike domains are oriented to specific directions, corresponding to the directions of the potassium ion array on the mica surface having 6-fold symmetry. We demonstrate the possible formation mechanism and the elongation origin of rodlike domains in mixed LB monolayers and propose the two-step formation process of oriented rodlike domains deposited onto the mica substrate.  相似文献   

20.
In this work the interaction between human serum albumin (HSA) and a monofluorinated phospholipid, 1-palmitoyl-2-[16-fluoropalmitoyl-phosphatidylcholine] (F-DPPC), was studied by using Langmuir monolayer and Brewster angle microscopy (BAM) techniques. Different amounts of F-DPPC were spread on a previously formed HSA monolayer located at the air/water interface at 25 °C and the mixed monolayers thus obtained showed the existence of a liquid expanded-liquid condensed (LE-LC) phase transition (at 14 mN/m), attributed to the pure F-DPPC monolayer, coexisting with a second transition (at 22-24 mN/m) corresponding to the protein conformational change from an unfolded state to another in “loops” configuration. Relative thickness measurements recorded during the compression of the mixed monolayers showed the existence of an “exclusion” surface pressure (πexc), above which the protein is squeezed out the interface, but not totally. BAM images reveal that some protein molecules in a packed “loops” configuration remain at the interface at surface pressures higher than the “exclusion” surface pressure. The application of the Defay-Crisp phase rule to the phase diagram of the F-DPPC/HSA system can explain the existence of certain regions of surface pressure in which the mixed monolayer components are miscible, as well as those others that they are immiscible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号