首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 208 毫秒
1.
Summary A new nematic liquid crystalline GC stationary phase is introduced. The systematic name is: ethylen-4,4 diphenyl bis (4-methoxybenzoate): EPMB. It has a nematic range 168°C to 302°C. Coated on a support (Chromosorb W AW DMCS 100/120 mesh) it can be supercooled to 65°C and used for temperature programmed GC from 65°C to 260°C. The selectivity, bleeding, supercooling and temperature dependence of the capacity ratio are reported. In comparison with nematic phases with similar working range, EPMB shows equal separating power, but less bleeding and an extended temperature range. The main point of this work is the use of EPMB as an example of a liquid crystalline compound as a stationary phase for the gas chromatographic separation of certain compounds.  相似文献   

2.
Summary As part of the gas chromatographic study of inclusion compounds, the behaviour of cetyl alcohol (the guest component in the inclusion compound with urea) and its properties as a stationary phase were followed. Measurements were carried out over a temperature range of 40–100°C with a wide selection of substances including aliphatic and aromatic hydrocarbons, halocarbons, alcohols, esters, ethers, carbonyl compounds, amines and organic acids. The experimental retention data were interpreted from the point of view of possible interactions and the contributions from the individual intermolecular forces were evaluated. The results indicated that cetyl alcohol could be used as a stationary phase over a range of 50–90°C for rapid analysis of many non-polar, medium and strongly polar substances.Dedicated to the 70th birthday of ProfessorA. A. Zhukhovitskii.  相似文献   

3.
Summary Water was added to CO2 by saturation to increase the solvation power of the mobile phase in supercritical fluid chromatography. The saturation was performed at a temperature above the boiling point of water (100°C) to increase the amount of water which could be loaded homogeneously into the CO2 (2.5–3.0 mol% water as compared to about 0.25 mol% water at 25°C). A linear composition of water was produced by altering the density of the CO2 during saturation. Modifications to the injector and CO2 transfer lines prevented phase separation as a result of the instrumentation used in capillary supercritical fluid chromatography (SFC). After fitting vapor-liquid equilibria data to pressure, density, and temperature conditions, approximately 2.5–3.0 mol% of water was introduced in a linear gradient at 110°C. The effect of water on SFC performance was evaluated with standard steroid compounds. This paper provides further evidence for the need to examine vapor-liquid equilibria data prior to SFC.  相似文献   

4.
The important polymer stabilizer, 1,2-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, which serves a dual role as a metal deactivator and antioxidant, is shown to have crystal polymorphism. Although the published melting range is 225-232 °C, which is well above the processing temperature of many polymers in which it is used, existence of a second polymorph that transforms below 205 °C is demonstrated. This α polymorph, which is thermodynamically stable at room temperature, is thermodynamically un-favored at temperatures above about 176 °C. It is shown that under some conditions the α polymorph can endothermically pass directly into the melt state at temperatures below 205 °C, while under other conditions it undergoes a direct endothermic solid-solid transition to the higher melting β polymorph.The results highlight the potential importance of polymorphs for controlling polymer additive behavior and elucidate important phenomena relevant to dispersion of this additive in polymer compounds.  相似文献   

5.
The melting curve of NH4HF2 I rises from 125.2°C at atmospheric pressure to a triple point II/I/liquid at 9.3 kbar, 220°C. The I/II phase boundary is terminated at a triple point III/I/II at ∼45 kbar, 295°C. The melting curve of the new phase NH4HF2 II passes through a broad maximum at ∼39 kbar, 306°C, and is terminated at a triple point III/II/liquid at 46.3 kbar, 301°C. The melting curve of NH4HF2 III rises with pressure. The NH4HF2 III may be a dense hydrogen-bonded phase. Liquid NH4HF2 appears to be anomalous in several respects, and has a high compressibility relative to the solid phases.  相似文献   

6.
In this work, microencapsulated phase change materials (PCMs) with a melting temperature of 52 °C have been used to improve thermal inertia phenomena on an elastomeric matrix of styrene–ethylene/butylene–styrene (SEBS) material. The amount of PCMs has varied in the 1–10 wt.% and these materials have been processed by conventional injection molding without PCM degradation. Mechanical characterization of SEBS–PCM compounds has been carried out and the obtained results show good maintenance of both resistant and ductile properties for PCM amounts comprised in the 1–5 wt.% range. Scanning electron microscopy (SEM) analysis has revealed good wetting properties of PCM microcapsules with the SEBS matrix which is a key factor to obtain good mechanical performance. The effect of PCM addition on thermal inertia has been evaluated by active infrared thermography (IRT), showing a remarkable effect on thermal regulation of SEBS in the temperature range close to the melting point of the PCM (52 °C). This thermoregulation effect is more accurate as the PCM content increases. Also, cooling curves have been constructed in order to quantify the thermal inertia effect in a cooling process.  相似文献   

7.
Poly(2-methylpentamethylene terephthalamide) (Nylon M5T) is a new high temperature aromatic polyamide developed by Hoechst Celanese. In this paper thermal properties of Nylon M5T chips, as well as as-spun and drawn fibers were studied by DSC, DMA, hot stage microscopy and WAXS.T g of the fully amorphous Nylon M5T is 143°C when measured by DSC;T g increases with crystallinity to 151°C. The temperature dependence of the solid and melt specific heat capacities has also been determined. The heat capacity increase at the glass transition of the amorphous polymer is 103.9 J °C–1 mol–1.T g by DMA for the as-spun fiber is 155°C, for a drawn fiber is 180°C. Three secondary transitions were observed by DMA in addition to the glass transition. These correspond to a local mode relaxation of the methylene groups at –120°C, onset of rotation of the amide-groups at –65°C and the onset of the rotation of the phenylenegroups (at 63°C). The crystallinity of Nylon M5T strongly depends on the rate of cooling from the melt. The isothermal crystallization data are melt temperature dependent: two-dimensional crystallization takes place when the samples are crystallized from higher melt temperatures, and this phase changes into a spherulitic structure during cooling to room temperature. Spherulitic crystallization occurs when lower melt temperatures are used. This polymer has three crystal forms as indicated by DSC, DMA and WAXS data. The crystal to crystal transitions are clearly visible when amorphous samples are heated in the DSC, or the DMA curves of as-spun fibers are recorded. It is experimentally shown that a considerable melting of the lower temperature crystal forms takes place during the crystal to crystal transitions. The equilibrium melting point as measured by the Hoffman-Weeks method, has been determined to be 339°C.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday  相似文献   

8.
T. Wu  Y. Li  L. Song 《European Polymer Journal》2005,41(10):2216-2223
Thermal spectra of poly(trimethylene terephthalate) (PTT) were collected over a temperature range of 40-250 °C by FTIR micro-spectroscopy. Based on the changes of absorbance ratio corresponding to characteristic groups in low and high vibration energy states, the apparent enthalpy differences of vibration energy states transformation (ΔHv) in the melting process have been calculated by van’t Hoff equation at constant pressure. In comparison with the values of ΔHv, the status of participation for the vibration mode of various characteristic groups in PTT macromolecular chain segments was analyzed. It was found that the vibration modes related to the trimethylene glycol unit (O-CH2-CH2-CH2-O) of PTT behaved significant sensitivity and made prominent contribution in the melting process. By the summarization of corresponding data, it has shown that the melting course concerned amorphous phase began at as early as 218 °C, accompanied by the occurrence of crystallization to certain extent, and the ending point was at approximately 238 °C; whereas the melting course concerned crystalline phase began till 228 °C, with the top value of 238 °C, and ended at 242 °C. Besides, for the particular ordered arrangement of chain segments of aromatic polyesters in the melting course, FTIR analysis has provided a reasonable explanation on a molecular level.  相似文献   

9.
Adhesive effect of polyethylene moldings by use of high density polyethylene gels in organic solvents such as decalin, tetralin, ando-dichlorobenzene was investigated by shearing tests, electron microscope, and DSC measurements. All of the gels showed such a strong adhesive strength over 36 kg/cm2 that polyethylene plates of 3 mm in thickness gave rise to necking sufficient for practical use, when heated at 120 °C for 2 h. In particular, the gel in tetralin showed a strong adhesive strength when heated at 110 °C. It was found that adhesive strength increases with the heating temperature; the temperatures at which adhesive strength begins to increase differ depending on the type of polyethylene sample and solvent. It is apparent that polyethylene gels exhibit an adhesive effect when they are heated at higher temperatures than the gel melting temperatures, and that the closer the SP values of solvents used for the gelation are to the molded polyethylene, the stronger the adhesion of the polyethylene molding.  相似文献   

10.
A Barbier-type propargylation of carbonyl compounds with propargyl bromide has been achieved with reactive zinc-copper couple under solvent-free conditions. The reaction of aldehydes with propargyl bromide produced the unique homopropargyl alcohols in excellent yields at room temperature without the formation of homoallenyl alcohols. The ketones reacted with propargyl bromide to give the corresponding homopropargyl alcohols in good to excellent yields at −14 to −16 °C. The advantages of this method are excellent yields, short reaction time, high regioselectivity, and avoidance of the use of organic solvents.  相似文献   

11.
A new series of low melting and hydrophobic ionic liquids (ILs) containing the bis[bis(pentafluoroethyl)phosphinyl]imide anion, [(C2F5)2P(O)]2N (FPI), and ammonium, phosphonium, imidazolium, pyridinium or pyrrolidinium cations were prepared and characterized. Their density, viscosity, melting point, glass transition temperature, decomposition temperature and conductivity are discussed. Many of these ionic liquids are liquids at room temperature with melting points below 15 °C, viscosities below 110 mm2 s−1 and thermal stabilities above 300 °C.  相似文献   

12.
Subcritical water extraction of organic matter containing sedimentary rocks at 300 °C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300 °C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300 °C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300 °C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300 °C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities.  相似文献   

13.
Single crystals of diglycine perchlorate (DGPCl) and deuterated diglycine perchlorate (DDGPCl) are synthesized and studied using differential scanning calorimetry (DSC) and Raman spectroscopy. DSC data indicated that both DGPCl and DDGPCl undergo a reversible first-order phase transition (solid-solid) at −11.5 °C and −9.3 °C, respectively. The Raman spectra of DGPCl and DDGPCl obtained at ambient temperature are analyzed to infer on the strength of hydrogen bonding in this compound relative to the parent compounds. The occurrence of NH stretching frequency at higher value in DGPCl in comparison with glycine suggests presence of a weak N–H?O hydrogen bond in DGPCl than in glycine. The lower isotropic melting temperature of DGPCl as compared to that of glycine is understood on the basis of the relative strength of hydrogen bonding in these compounds.  相似文献   

14.
Several fluorene or carbazole-based dithienosiloles (DTSs) have been synthesized and their thermal, photophysical, and electrochemical properties have been systematically investigated. These compounds show high thermal stability with glass transition temperature above 110 °C as well as decomposition temperatures at ∼400 °C. Intense green emission is observed in the spectral region of 500-510 nm for all compounds (ΦPL=0.31-0.80), that is, attributed to both the 5,5′-substituents of the DTS ring and DTS-based π-π transition. Based on the emission spectra at 77 K, the triplet energy for these compounds was calculated to be within 2.1-2.2 eV, indicating that they may be used as host materials for red emitters in organic light-emitting diodes (OLEDs). All compounds exhibit reversible oxidation and possess low-lying LUMO energies, owing to the conjugated fluorene/carbazole substituents on the DTS. This along with the high thermal/electrochemical stabilities and high fluorescent quantum efficiencies makes the new DTSs compounds promising candidates for use in OLEDs as emitters, host and electron-transporting materials.  相似文献   

15.
Summary Chloroprocaine hydrochloride (2-CPCHC) is a local anaesthetic agent of the ester type preferentially used for epidural anaesthesia. The compound, official in the USP, was found to exist in two polymorphic crystal forms which have been characterized by thermomicroscopy, differential scanning calorimetry (DSC), pycnometry, FTIR-, FT-Raman-spectroscopy as well as X-ray powder diffractometry. Based on these data the relative thermodynamic stability of the two forms was determined and is represented in a semi-schematic energy/temperature diagram. Mod. I° is the thermodynamically stable form at room temperature. This form is present in commercial products and can be crystallized from ethanol. Mod. II can be obtained by annealing the supercooled melt in a temperature range between 100 and 130°C. Upon heating mod. II exhibits an exothermic phase transition (ΔtrsHII-I: -5.0±0.5 kJ mol-1) at about 134°C to mod. I° (melting point 175°C, ΔfusHI: 46.6±0.6 kJ mol-1). The exothermic transformation of mod. II to mod. I° confirms that mod. I° is thermodynamically stable in the entire temperature range (heat of transition rule) whereas mod. II is monotropically related to mod. I°, i.e. is metastable at all temperatures below its melting point. Mod. II is of low kinetic stability at room temperature and the transformation to mod. I° starts within a few minutes at room temperature. The N-H band in the infrared spectrum of mod. I° (3433 cm-1) lies at significantly higher wavenumbers than that of mod. II (3413 cm-1) indicating differences in the hydrogen bonding arrangement. Furthermore, the measured density of mod. I° is lower than the density of mod. II and thus both, the IR- and the density-rule are violated in this polymorphic system.  相似文献   

16.
Oxidation of oleic acid with atmospheric oxygen in the presence of HgCl2 and various organo- mercury compounds (methylmercury iodide, isopropylmercury bromide, n-hexylmercury bromide, phenylmercury bromide, diphenylmercury, p-tolylmercury bromide, bis-p-tolylmercury) was studied. Mercury compounds exert a dual effect on accumulation of oleic acid hydroperoxide in the temperature range 20-90°C. Below 50°C, the concentration of the hydroperoxides formed in the presence of mercury compounds is lower, and at higher temperatures, higher than in the experiments performed without mercury compounds. Comparison of the concentrations of oleic acid hydroperoxides with those of their transformation products, carbonyl compounds, determined spectrophotometrically, shows that actually organomercury compounds and HgCl2 accelerate peroxide oxidation at all the studied temperatures. Decreased accumulation of peroxides below 50°C is apparently due to the fact that the rate of their reaction with organomercury compounds is higher than the rate of their formation.  相似文献   

17.
4-Hydroxy-, 4-hydroxy-5-methyl-, 4-hydroxy-7-methylbenzo-2,1,3-thiadiazoles are polymorphous.4-Hydroxybenzo-2,1,3-thiadiazole (I), 4-hydroxy-5-methyl- and 4-hydroxy-7-methylbenzo-2, 1, 3-thiadiazoles (II and III) melt at 114–115°, 110–112°, 100–102° C, respectively, after recrystallization from water [2–4], but after recrystallization from petrol ether [5] they melt at 128–129°, 124–125°, and 119–120° C [5]. In this connection we recrystallized these phenols repeatedly from petrol ether after recrystallizing them from water, and their melting points rose as expected [5]. On the other hand, the compounds with melting points 128–129°, 124–125°, 119–120° C (ex petrol ether), after repeated crystallization from water melted at 114–115°, 110–112°, 100–102° C, respectively.For Part XXXVIII see [1].  相似文献   

18.
A rapid, relatively simple method for determining vapor pressure and heat of vaporization on small amounts of organic compounds is described. A DuPont 900 differential thermal analyzer (DTA), a Perkin—Elmer Model DSC-1B differential scanning calorimeter (DSC), and a Thomas—Hoover (TH) melting point apparatus were evaluated in this work. Vapor pressure data for a wide variety of organic liquids were obtained by measuring the boiling points of the liquids at pressures ranging from 20 to 735 torr. A computer was used to rapidly plot the experimental data. The average deviations of boiling points from the literature values were 2.3°C for the DTA 1.2°C for the DSC, and 1.5°C for the TH. The vapor pressure data were used to solve the Haggenmacher equation for heat of vaporization (ΔHv). The deviations of the experimental values for ΔHv. from the literature values were 5.5%, 8.3%. and 3.3% for the DTA, DSC, and TH methods, respectively.  相似文献   

19.
Films that can be reversibly switched from opaque to transparent states by varying temperature (TRLS films), have potential applications in thermal sensors, optical devices, recording media, etc. A dispersion of organic crystals in a thermoset may be used for these purposes provided that at temperatures higher than the melting point there is a matching of refractive indices of both phases. A model system consisting on a dispersion of diphenyl (DP) crystals in an epoxy matrix based on diglycidyl ether of bisphenol A and m-xylylenediamine, was analyzed as a possible TRLS film encapsulated between transparent covers to avoid sublimation of DP. To obtain a uniform dispersion of DP-rich domains in the epoxy matrix by polymerization-induced phase separation, it was necessary to add 5 wt% of polystyrene (PS) to the initial formulation. Phase separation induced by polymerization at 80 °C led to a dispersion of PS/DP domains in the epoxy matrix due to the low compatibility of PS with the epoxy and its high compatibility with DP. Crystallization and melting processes were confined to the interior of dispersed domains leading to an excellent reproducibility of the optical properties of TRLS films in the course of successive heating-cooling cycles.  相似文献   

20.
The melting of PbBr2 in sealed crucibles was investigated by means of DSC. Three factors were considered to affect melting point: i) impurities, ii) the bromine pressure over the PbBr2, and iii) photolysis. Both crystals and powders were investigated. The peak of the melting changed after sample grinding. The bromine pressure over the PbBr2 was found to cause a significant error in the determination of the melting point.Lead bromide melts at 370.6±0.2°C. The heat of melting is 42.9±1.8 J g–1.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号