首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noncovalent interactions play a pivotal role in regulating protein conformation, stability and dynamics. Among the quantum mechanical (QM) overlap-based noncovalent interactions, nπ* is the best understood with studies ranging from small molecules to β-turns of model proteins such as GB1. However, these investigations do not explore the interplay between multiple overlap interactions in contributing to local structure and stability. In this work, we identify and characterize all noncovalent overlap interactions in the β-turn, an important secondary structural element that facilitates the folding of a polypeptide chain. Invoking a QM framework of natural bond orbitals, we demonstrate the role of several additional interactions such as nσ* and ππ* that are energetically comparable to or larger than nπ*. We find that these interactions are sensitive to changes in the side chain of the residues in the β-turn of GB1, suggesting that the nπ* may not be the only component in dictating β-turn conformation and stability. Furthermore, a database search of nσ* and ππ* in the PDB reveals that they are prevalent in most proteins and have significant interaction energies (∼1 kcal/mol). This indicates that all overlap interactions must be taken into account to obtain a comprehensive picture of their contributions to protein structure and energetics. Lastly, based on the extent of QM overlaps and interaction energies, we propose geometric criteria using which these additional interactions can be efficiently tracked in broad database searches.  相似文献   

2.
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the S11(ππ*) bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the S11(ππ*) bright state to the T23(nπ*) triplet state via an intersystem crossing process involving the (S11(ππ*)/T23(nπ*))STCP singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the S11(ππ*) state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the S11(ππ*) potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.  相似文献   

3.
Tetrazines with branched alkoxy substituents are liquids at ambient temperature that despite the high chromophore density retain the bright orange fluorescence that is characteristic of this exceptional fluorophore. Here, we study the photophysical properties of a series of alkoxy-tetrazines in solution and as neat liquids. We also correlate the size of the alkoxy substituents with the viscosity of the liquids. We show using time-resolved spectroscopy that intersystem crossing is an important decay pathway competing with fluorescence, and that its rate is higher for 3,6-dialkoxy derivatives than for 3-chloro-6-alkoxytetrazines, explaining the higher fluorescence quantum yields for the latter. Quantum chemical calculations suggest that the difference in rate is due to the activation energy required to distort the tetrazine core such that the nπ*S1 and the higher-lying ππ*T2 states cross, at which point the spin-orbit coupling exceeding 10 cm1 allows for efficient intersystem crossing to occur. Femtosecond time-resolved anisotropy studies in solution allow us to measure a positive relationship between the alkoxy chain lengths and their rotational correlation times, and studies in the neat liquids show a fast decay of the anisotropy consistent with fast exciton migration in the neat liquid films.  相似文献   

4.
The potential energy curves have been investigated for the 12 lowest sextet electronic states in the 2s+1Λ(±)2s+1Λ(±) representation below 53,000 cm−1 of the molecule CrF via CASSCF and MRCI (single and double excitation with Davidson correction) calculations. Seven electronic states have been studied theoretically for the first time. The harmonic frequency ωe, the internuclear distance Re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent dipole moment μ have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv and the abscissas of the turning points Rmin and Rmax have been calculated for the considered electronic states up to the vibrational level v = 39. The comparison of these values to the theoretical and experimental results available in the literature shows a good agreement.  相似文献   

5.
The electric dipole–magnetic dipole polarizability tensor κ, introduced to interpret the optical activity of chiral molecules, has been expressed in terms of a series of density functions kαβ, which can be integrated all over the three-dimensional space to evaluate components καβ and trace καα. A computational approach to kαβ, based on frequency-dependent electronic current densities induced by monochromatic light shining on a probe molecule, has been developed. The dependence of kαβ on the origin of the coordinate system has been investigated in connection with the corresponding change of καβ. It is shown that only the trace kαα of the density function defined via dynamic current density evaluated using the continuous translation of the origin of the coordinate system is invariant of the origin. Accordingly, this function is recommended as a tool that is quite useful for determining the molecular domains that determine optical activity to a major extent. A series of computations on the hydrogen peroxide molecule, for a number of different HO–OH dihedral angles, is shown to provide a pictorial documentation of the proposed method.  相似文献   

6.
In this work, a low-cost and rapid electrochemical resistive DNA biosensor based on the current relaxation method is described. A DNA probe, complementary to the specific human papillomavirus type 16 (HPV-16) sequence, was immobilized onto a screen-printed gold electrode. DNA hybridization was detected by applying a potential step of 30 mV to the system, composed of an external capacitor and the modified electrode DNA/gold, for 750 µs and then relaxed back to the OCP, at which point the voltage and current discharging curves are registered for 25 ms. From the discharging curves, the potential and current relaxation were evaluated, and by using Ohm’s law, the charge transfer resistance through the DNA-modified electrode was calculated. The presence of a complementary sequence was detected by the change in resistance when the ssDNA is transformed in dsDNA due to the hybridization event. The target DNA concentration was detected in the range of 5 to 20 nM. The results showed a good fit to the regression equation ΔRtotal(Ω)=2.99 × [DNA]+81.55, and a detection limit of 2.39 nM was obtained. As the sensing approach uses a direct current, the electronic architecture of the biosensor is simple and allows for the separation of faradic and nonfaradaic contributions. The simple electrochemical resistive biosensor reported here is a good candidate for the point-of-care diagnosis of HPV at a low cost and in a short detection time.  相似文献   

7.
We here investigate the Electronic Circular Dichroism (ECD) Spectra of two representative Guanine-rich sequences folded in a Quadruple helix (GQ), by using a recently developed fragment diabatisation based excitonic model (FrDEx). FrDEx can include charge transfer (CT) excited states and consider the effect of the surrounding monomers on the local excitations (LEs). When applied to different structures generated by molecular dynamics simulations on a fragment of the human telomeric sequence (Tel21/22), FrDEx provides spectra fully consistent with the experimental one and in good agreement with that provided by quantum mechanical (QM) method used for its parametrization, i.e., TD-M05-2X. We show that the ECD spectrum is moderately sensitive to the conformation adopted by the bases of the loops and more significantly to the thermal fluctuations of the Guanine tetrads. In particular, we show how changes in the overlap of the tetrads modulate the intensity of the ECD signal. We illustrate how this correlates with changes in the character of the excitonic states at the bottom of the La and Lb bands, with larger LE and CT involvement of bases that are more closely stacked. As an additional test, we utilised FrDEx to compute the ECD spectrum of the monomeric and dimeric forms of a GQ forming sequence T30695 (5TGGGTGGGTGGGTGGG3), i.e., a system containing up to 24 Guanine bases, and demonstrated the satisfactory reproduction of the experimental and QM reference results. This study provides new insights on the effects modulating the ECD spectra of GQs and, more generally, further validates FrDEx as an effective tool to predict and assign the spectra of closely stacked multichromophore systems.  相似文献   

8.
9.
This study is to investigate the magnetohydrodynamic (MHD) stagnation point flow and heat transfer characteristic nanofluid of carbon nanotube (CNTs) over the shrinking surface with heat sink effects. Similarity equations deduced from momentum and energy equation of partial differential equations are solved numerically. This study looks at the different parameters of the flow and heat transfer using first phase model which is Tiwari-Das. The parameter discussed were volume fraction nanoparticle, magnetic parameter, heat sink/source parameters, and a different type of nanofluid and based fluids. Present results revealed that the rate of nanofluid (SWCNT/kerosene) in terms of flow and heat transfer is better than (MWCNT/kerosene) and (CNT/water) and regular fluid (water). Graphically, the variation results of dual solution exist for shrinking parameter in range λc<λ1 for different values of volume fraction nanoparticle, magnetic, heat sink parameters, and a different type of nanofluid. However, a unique solution exists at 1<λ<1, and no solutions exist at λ<λc which is a critical value. In addition, the local Nusselt number decreases with increasing volume fraction nanoparticle when there exists a heat sink effect. The values of the skin friction coefficient and local Nusselt number increase for both solutions with the increase in magnetic parameter. In this study, the investigation on the flow and heat transfer of MHD stagnation point nanofluid through a shrinking surface with heat sink effect shows how important the application to industrial applications.  相似文献   

10.
Liquid Crystal Elastomers (LCEs) combine the anisotropic ordering of liquid crystals with the elastic properties of elastomers, providing unique physical properties, such as stimuli responsiveness and a recently discovered molecular auxetic response. Here, we determine how the molecular relaxation dynamics in an acrylate LCE are affected by its phase using broadband dielectric relaxation spectroscopy, calorimetry and rheology. Our LCE is an excellent model system since it exhibits a molecular auxetic response in its nematic state, and chemically identical nematic or isotropic samples can be prepared by cross-linking. We find that the glass transition temperatures (Tg) and dynamic fragilities are similar in both phases, and the T-dependence of the α relaxation shows a crossover at the same T* for both phases. However, for T>T*, the behavior becomes Arrhenius for the nematic LCE, but only more Arrhenius-like for the isotropic sample. We provide evidence that the latter behavior is related to the existence of pre-transitional nematic fluctuations in the isotropic LCE, which are locked in by polymerization. The role of applied strain on the relaxation dynamics and mechanical response of the LCE is investigated; this is particularly important since the molecular auxetic response is linked to a mechanical Fréedericksz transition that is not fully understood. We demonstrate that the complex Young’s modulus and the α relaxation time remain relatively unchanged for small deformations, whereas for strains for which the auxetic response is achieved, significant increases are observed. We suggest that the observed molecular auxetic response is coupled to the strain-induced out-of-plane rotation of the mesogen units, in turn driven by the increasing constraints on polymer configurations, as reflected in increasing elastic moduli and α relaxation times; this is consistent with our recent results showing that the auxetic response coincides with the emergence of biaxial order.  相似文献   

11.
12.
Here, we will show photo-induced supramolecular chirality in thin films of achiral amorphous polymers with azo groups in their side-chain. A matter of particular interest is the effect of various film thicknesses on azimuthal rotation and ellipticity of incident/transmitted polarized light. Furthermore, we investigated the temporal stability of inscribed chirality. By polarimetric measurements, we found out that the azimuthal rotation gets higher with layer thickness. In this scope, we were able to measure a very high azimuthal rotation of Δψ/d=112.5/μm. The inscribed chirality was stable for several days. Furthermore, we investigated the time-resolved behavior of incident and transmitted polarization ellipticities for various thicknesses. The time dependency may be explained by a two-step process: (1) fast trans-cis-isomerization resulting in photo-orientation and (2) slow photo-induced mass flow.  相似文献   

13.
In this paper, the degradation of the diazo dye naphthol blue black (NBB) using the Galvano-Fenton process is studied experimentally and numerically. The simulations are carried out based on the anodic, cathodic, and 34 elementary reactions evolving in the electrolyte, in addition to the oxidative attack of NBB by HO at a constant rate of 3.35×107 mol1·m3·s1 during the initiation stage of the chain reactions. The selection of the operating conditions including the pH of the electrolyte, the stirring speed, and the electrodes disposition is performed by assessing the kinetics of NBB degradation; these parameters are set to 3, 350 rpm and a parallel disposition with a 3 cm inter-electrode distance, respectively. The kinetics of Fe(III) in the electrolyte were monitored using the principles of Fricke dosimetry and simulated numerically. The model showed more than a 96% correlation with the experimental results in both the blank test and the presence of the dye. The effects of H2O2 and NBB concentrations on the degradation of the dye were examined jointly with the evolution of the simulated H2O2, Fe2+, and HO concentrations in the electrolyte. The model demonstrated a good correlation with the experimental results in terms of the initial degradation rates, with correlation coefficients exceeding 98%.  相似文献   

14.
15.
The excited states of the phenylene ethynylene dendrimer are investigated comprehensively by various electronic‐structure methods. Several computational methods, including SCS‐ADC(2), TDHF, TDDFT with different functionals (B3LYP, BH&HLYP, CAM‐B3LYP), and DFT/MRCI, are applied in systematic calculations. The theoretical approach based on the one‐electron transition density matrix is used to understand the electronic characters of excited states, particularly the contributions of local excitations and charge‐transfer excitations within all interacting conjugated branches. Furthermore, the potential energy curves of low‐lying electronic states as the functions of ethynylene bonds are constructed at different theoretical levels. This work provides us theoretical insights on the intramolecular excited‐state energy transfer mechanism of the dendrimers at the state‐of‐the‐art electronic‐structure theories. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
With a longer-term goal of addressing the comparative behavior of the aqueous halides F, Cl, Br, and I on the basis of quasi-chemical theory (QCT), here we study structures and free energies of hydration clusters for those anions. We confirm that energetically optimal (H2O)nX clusters, with X = Cl, Br, and I, exhibit surface hydration structures. Computed free energies, based on optimized surface hydration structures utilizing a harmonic approximation, typically (but not always) disagree with experimental free energies. To remedy the harmonic approximation, we utilize single-point electronic structure calculations on cluster geometries sampled from an AIMD (ab initio molecular dynamics) simulation stream. This rough-landscape procedure is broadly satisfactory and suggests unfavorable ligand crowding as the physical effect addressed. Nevertheless, this procedure can break down when n4, with the characteristic discrepancy resulting from a relaxed definition of clustering in the identification of (H2O)nX clusters, including ramified structures natural in physical cluster theories. With ramified structures, the central equation for the present rough-landscape approach can acquire some inconsistency. Extension of these physical cluster theories in the direction of QCT should remedy that issue, and should be the next step in this research direction.  相似文献   

17.
The reduction of oxovanadium(V) by 1-phenyl-3-methyl-4-toluoyl-5-pyrazolone (Hpmtp) over the pH range 1.0–7.0 has been assessed by cyclicvoltammetry, electron paramagnetic resonance spectroscopy, magnetic susceptibility, FT-IR, electronic spectroscopy, high-resolution mass spectroscopy and elemental analyses. The reaction proceeds by the transfer of one electron from Hpmtp to oxovanadium(V) via the formation of a free-radical intermediate, and subsequently the reduced oxovanadium(IV) species rapidly complexes with the available free ligand. An indirect evidence for the generation of the free-radical intermediate in the process of the reduction has been confirmed by acrylonitrile polymerization. The free-radical intermediates thus generated in the process couple to form a dimer, which also has been confirmed by various spectroscopic techniques. The electronic spectrum of VO(pmtp)2 displays characteristic absorption peaks corresponding to transitions from the dxy orbital to dxz (794 nm), dyz (643 nm), dx2-y2dx2-y2 (501 nm) and dz2dz2 (424 nm) of the oxovanadium(IV) complex with a distorted square pyramidal geometry. The slightly distorted square pyramidal geometry was obtained from a DFT calculation with the four oxygen atoms from the two pmtp ligands at the base and a VO double bond of length 1.584 Å pointing towards the apex of the pyramid.  相似文献   

18.
Human immunodeficiency virus (HIV) is a life life-threatening and serious infection caused by a virus that attacks CD4+ T-cells, which fight against infections and make a person susceptible to other diseases. It is a global public health problem with no cure; therefore, it is highly important to study and understand the intricate phenomena of HIV. In this article, we focus on the numerical study of the path-tracking damped oscillatory behavior of a model for the HIV infection of CD4+ T-cells. We formulate fractional dynamics of HIV with a source term for the supply of new CD4+ T-cells depending on the viral load via the Caputo–Fabrizio derivative. In the formulation of fractional HIV dynamics, we replaced the constant source term for the supply of new CD4+ T-cells from the thymus with a variable source term depending on the concentration of the viral load, and introduced a term that describes the incidence of the HIV infection of CD4+ T-cells. We present a novel numerical scheme for fractional view analysis of the proposed model to highlight the solution pathway of HIV. We inspect the periodic and chaotic behavior of HIV for the given values of input factors using numerical simulations.  相似文献   

19.
We present a combined experimental and theoretical investigation on Ca+ ions in helium droplets, HeNCa+. The clusters have been formed in the laboratory by means of electron-impact ionization of Ca-doped helium nanodroplets. Energies and structures of such complexes have been computed using various approaches such as path integral Monte Carlo, diffusion Monte Carlo and basin-hopping methods. The potential energy functions employed in these calculations consist of analytical expressions following an improved Lennard-Jones formula whose parameters are fine-tuned by exploiting ab initio estimations. Ion yields of HeNCa+ -obtained via high-resolution mass spectrometry- generally decrease with N with a more pronounced drop between N=17 and N=25, the computed quantum HeNCa+ evaporation energies resembling this behavior. The analysis of the energies and structures reveals that covering Ca+ with 17 He atoms leads to a cluster with one of the smallest energies per atom. As new atoms are added, they continue to fill the first shell at the expense of reducing its stability, until N=25, which corresponds to the maximum number of atoms in that shell. Behavior of the evaporation energies and radial densities suggests liquid-like cluster structures.  相似文献   

20.
Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller–Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers’ stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm1–1700 cm1 and 2300 cm1–3400 cm1 in the gas phase and 600 cm1–1800 cm1 and 2200 cm1–3400 cm1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm1–1700 cm1 and 2300 cm1–3300 cm1 for the gas phase and one broad absorption region in the solid state between 700 cm1 and 3100 cm1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号