首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-temperature dependences of magnetic characteristics (namely, the coercive force H c , the remanent magnetization M r , local magnetic anisotropy fields H a, and the saturation magnetization M s ) determined from the irreversible and reversible parts of the magnetization curves for Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes are investigated experimentally. The behavior of the temperature dependences of the coercive force H c (T) and the remanent magnetization M r (T) indicates a single-domain structure of the particles under study and makes it possible to estimate their blocking temperature T B = 420–450 K. It is found that the saturation magnetization M s and the local magnetic anisotropy field H a vary with temperature as ~T 5/2.  相似文献   

2.
The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M FC and M ZFC, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe2O4/CoFe2 composites with different relative content of CoFe2. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T irr. For the sample with less CoFe2, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad peak at an intermediate temperature T 2 below T irr , and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the ?d(M FC ? M ZFC)/dT curves of the sample with more CoFe2, besides a broad peat at an intermediate temperature T 2, a rapid rise around the low temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
Graphical abstract CoFe2O4/CoFe2 composites with different relative content of CoFe2 were prepared by reducing CoFe2O4 in H2 for 4 h (S4H) and 8 h (S8H). The temperature-dependent FC and ZFC magnetizations, i.e., M FC and M ZFC, under different magnetic fields from 500 Oe to 20 kOe have been investigated. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at field-dependent irreversible temperature T irr. For the S4H sample, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad and field-dependent relaxing peak at T 2 below T irr (figure a), and the moments were suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the S8H sample, it exhibits the reentrant spin-glass state around 50 K, as evidenced by a peak in the M FC curve (inset in figure b) and as a result of the cooperative effects of the random anisotropy of CoFe2O4, exchange–spring occurring at the interface of CoFe2O4 and CoFe2 together with the inter-particle dipolar interaction (figure c); in ?d(M FC ? M ZFC)/dT curves, besides a broad relaxing peat at T 2, a rapid rise around the low-temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
  相似文献   

3.
Fe x Ag1?x granular thin-films, with the atomic Fe concentration, x, ranging from 0 up to 0.5, were deposited by dc magnetron co-sputtering. The giant magnetoresistance (GMR) intensity is maximum at x I  = 0.32, while the maximum of GMR efficiency, γ, i.e., the change of GMR intensity for a unit change of reduced squared magnetization, is observed at x γ = 0.26. Owing to the spin-dependent scattering features, the GMR intensity and γ depend on both the concentration and the arrangement of the magnetic material. Therefore, to explain the difference between x I and x γ and to understand how the structural properties affect the magnetoresistive behaviour, we performed magnetization, Mössbauer and X-ray diffraction measurements as a function of x. X-ray data indicate that the granular films exhibit three different regimes: for x < 0.2, they can be described as a Fe–Ag solid solution; for 0.2 < x < 0.32 the Fe–Ag solid solution is still observed and very small Fe precipitates are found; finally, for x > 0.32, a Fe–Ag saturated solid solution is detected, containing bcc Fe clusters whose size is about 10 nm. Differently, for all the concentrations, magnetization data show the presence of Fe precipitates, whose size increases with x, and the Mössbauer investigation confirms this picture. We find that the samples grown at x = x γ display the finest Fe dispersion within the Ag matrix, as the Fe–Ag solid solution is nearly at saturation and the Fe cluster size is of the order of a few nanometers; this arrangement possibly maximizes the magnetic/non-magnetic interface extension thus enhancing the GMR efficiency. If x is slightly increased, the increase in total Fe content compensates the GMR efficiency reduction, so the GMR intensity maximum is observed.  相似文献   

4.
Basic magnetic characteristics (coercive force Hc, residual magnetization Mr, magnetization M, and saturation magnetization Ms) of solid solutions of type (CuInSe2)1–x(MeSe)x (Me = Mn, Fe) have been investigated in a wide temperature interval (100–300 K). The existence of a magnetic phase transition has been established for all studied solid solutions at low temperatures, and the Néel temperatures have been determined from the temperature dependences of the magnetization. It is shown that the temperature dependences of coercive force Hc and of magnetization M can be described using the thermal relaxation (fluctuation) theory.  相似文献   

5.
The magnetic properties of an EuBaCo1.9O5.36 single crystal are studied in the temperature range T = 2–300 K and the magnetic field range H ≤ 90 kOe. This binary layered cobaltite single crystal has vacancies in the cobalt and oxygen sublattices, in contrast to the stoichiometric EuBaCo2O5.5 composition. All cobalt ions in EuBaCo1.9O5.36 are in a trivalent state. The single crystal has an orthorhombic structure with space group Pmmm, and its unit cell parameters are a = 3.883 Å, b = 7.833 Å, and c = 7.551 Å. The field and temperature dependences of the magnetization of the single crystal demonstrate that it is ferrimagnet below TC = 242 K. At T < 300 K, all three spin states of the Co3+ ions are present. The nearest-neighbor interactions give antiferromagnetic (AFM) and ferromagnetic (FM) contributions to the exchange energy. The ratio of the AFM to the FM contributions changes when temperature decreases because of a change in the spin state of the Co3+ ions. The single crystal exhibits signs of mictomagnetism at low temperatures in high magnetic fields. At T = 2 K and H = 90 kOe, the zero-field and nonzero-field magnetizations are strongly different because of a uniaxial magnetic anisotropy, which tends to set magnetization along the magnetic field applied in cooling throughout the crystal volume. As a result, a complex ferrimagnetic structure with a noncollinear direction of Co3+ spins appears. The following phenomena characteristic of mictomagnets are also observed in the EuBaCo1.9O5.36 single crystal: a shift in a magnetization hysteresis loop when temperature decreases, retained hysteretic phenomena and no magnetization saturation in high magnetic fields, and an orientation transition. The mictomagnetic state in EuBaCo1.9O5.36 is shown to be caused by the structural distortions induced by vacancies in the cobalt and oxygen sublattices and by the frustration of AFM and FM exchange interactions.  相似文献   

6.
The first thin La1?xAgyMnO3 epitaxial films (yx) were grown on SrTiO3 (110) substrates with silver present in the ionized state (Ag+) only. The Curie temperatures TC of the compositions with x = y = 0.05, x = y = 0.1, and x = 0.3 and y = 0.27 crystallizing in the hexagonal structure \(R\bar 3c\) above or close to room temperature. The temperature dependences of electrical resistivity ρ and of magnetoresistance ¦Δρ/ρ/¦ = ¦(ρH ? ρ H = 0)/ρH=0¦ pass through maxima near TC, with the magnetoresistance being negative and reaching colossal values of ~7–20% in a magnetic field H = 8.2 kOe not only at TC but also at room temperature. The magnetic moment per formula unit as derived from the saturation magnetization at T = 5 K is substantially smaller than expected for complete ferromagnetic ordering. The magnetization in fields of up to 6 kOe depends on the actual sample cooling conditions, and the hysteresis loop of a field-cooled sample is displaced along the H axis by ΔH. The above properties can be accounted for by the fact that the films are in a two-phase magnetic (ferromagnetic-antiferromagnetic) state induced by strong s-d exchange. The maximum value of Δ H was used to calculate the energy of exchange coupling between the ferromagnetic and antiferromagnetic parts of a sample.  相似文献   

7.
The pulsed nuclear magnetic resonance (NMR) method at a proton frequency of 25 MHz at temperatures of 22–160°C is used to detect the transverse magnetization decay in polyisoprene rubbers with various molecular masses, to determine the NMR damping time T 2, and to measure spin-lattice relaxation time T 1 and time T 2eff of damping of solid-echo signals under the action of a sequence of MW-4 pulses modified by introducing 180° pulses. The dispersion dependences of T 2eff obtained for each temperature are combined into one using the temperature-frequency equivalence principle. On the basis of the combined dispersion dependence of T 2eff and the data on T 2 and T 1, the correlation time spectrum of molecular movements is constructed. Analysis of the shape of this spectrum shows that the dynamics of polymer molecules can be described in the first approximation by the Doi-Edwards tube-reptation model.  相似文献   

8.
Based on the Heisenberg model including single-site uniaxial anisotropy and using aGreen’s function technique we studied the influence of size and composition effects on theCurie temperature T C , saturationmagnetization M S and coercivityH C of spherical nanoparticles with astructural formulaM e 1?x Zn x Fe2O4,Me = Ni, Cu, Co, Mn. It is shown that for x = 0.4–0.5and d = 10–20 nm these nanoparticles have aT C  = 315 K and are suitable for aself-controlled magnetic hyperthermia.  相似文献   

9.
The Co/CaF2/Si(001) heterostructures with the corrugated (110) surface of the CaF2 buffer layer have been grown by molecular beam epitaxy. The structures are nanoparticle arrays of single-crystal Co, mostly of the cubic fcc modification. The behavior of the magnetic hysteresis loops as a function of the density of coverage of the substrate by cobalt islands, the island size, and the temperature is studied using the magnetooptical technique. At low coverage densities, where the effective cobalt film thickness d eff is less than the critical value d eff c , the magnetic structure of the films at T = 294 K can be visualized as an ensemble of superparamagnetic, weakly interacting nanoparticles and is characterized by small values of the coercive field H c and the remanent magnetization M rem. A decrease in the temperature leads to a strong increase in H c and M rem, which is associated with the transition of the islands to the blocked state. The blocking temperature of the structures is T b ~ 280 K. The magnetic anisotropy parameter K and the saturation magnetization M s of the islands depend on the growth temperature of cobalt T Co. An increase in the coverage density above the critical thickness d iff c at T = 294 K brings about a strong increase in H c and M rem and the appearance of a hysteresis loop anisotropy originating from the corrugated structure of the CaF2 buffer layer. The experimental results are compared with the model of an ensemble of noninteracting superparamagnetic particles.  相似文献   

10.
The hexagonal pyrrhotite Fe1?x S nanodisks with the NiAs-type structure were synthesized by thermal decomposition of ferrous chloride and thiourea in oleylamine. The Mössbauer spectroscopy and magnetic measurements data indicate that a mixture of antiferromagnetic (AFM) and ferrimagnetic (FRM) phases with the NC (N ≥ 3) and 2C-type superstructures is present in the Fe1?x S compound at temperatures between 80 K and Néel temperature T N. At T < 370 K, the AFM phase prevails over the FRM phase. At T > 370 K, a redistribution of iron vacancies takes place, and the vacancy ordering transforms from the NC (N ≥ 3) to 2C-type which essentially increases the magnetization with maximum value at 470 K. Heating the sample above the Néel temperature 565 K leads to a random distribution of vacancies, and this state is quenched upon subsequent cooling of the sample to 300 K. This gives rise to a pure AFM structure with a zero magnetic moment due to a total compensation of the moments in neighboring iron layers. Thus, the high-temperature redistribution of cation vacancies leads to irreversible magnetic transformations in the Fe1?x S nanoparticles.  相似文献   

11.
Tm2O3 obeys between 80 and 980°K the Curie-Weiss lawχA (T+25=7,08) withμ eff=7.56 Bohr magnetons, the theoretical value for Tm3+(J=6,g=7/6). In the behavior of the metal,χΛ(T-14)=7.45 between 80 and 1540°K, a contribution of the non-localized electrons should be considered at high temperatures. The susceptibility of the metal is maximum at 53°K, minimum near 35°K, and the behavior is antiferromagnetic between these two temperatures, ferromagnetic below 35°K. An additional transition occurs near 10°K, vanishing by cooling in a magnetic field. The effect of this cryomagnetic treatment on the magnetization and the remanence has been measured in six different cooling fields. The magnetization reaches 1.0 and 5.0 magnetons in 26.7 and 110 kOe (pulsed field) respectively, whereas the saturation for the ground state3H6 isgJ=7.  相似文献   

12.
We report a quantitative investigation of the magnetic field-temperature phase diagram by taking into account a simple phenomenological model arising out of the interplay of kinetic arrest and thermodynamic transitions in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3, through magnetization measurements. Such studies are necessary as kinetic arrest plays an important role in the formation of “magnetic glasses”, which has been observed in systems undergoing first order magnetic phase transitions. It has been shown that disorder in a system results in the formation kinetic arrest (H K ,T K ) band, like supercooling (H *,T *) and superheating (H **,T **) band. Quantitative proofs are given to show that (H K ,T K ) band is anticorrelated with (H *,T *) and (H **,T **) bands, while the later two are correlated among themselves. Analysis of time dependence of magnetization at different temperatures is carried out to establish the fact that the kinetic arrested state is different from the supercooled state.  相似文献   

13.
The temperature dependences of the residual magnetization in narrow-band manganites (Pr0.67Ca0.33MnO3, Sm0.55Sr0.45Mn18O3, Sm0.55Sr0.45Mn16O3, and (NdEu)0.55Sr0.45Mn18O3) have been studied. All compounds studied are characterized by a fairly high residual magnetization M R (about 0.5 μB/Mn) at 4.2 K, which vanishes upon sample heating to the temperature T RE ≈ 30–35 K, which is much lower than the temperature T C of the ferromagnetic transition. However, upon magnetization of the samples at T RE < T < T C , the residual magnetization (smaller in magnitude) remains up to T C . For the composition (NdEu)0.55Sr0.45Mn18O3, the residual magnetization remains at T < T C , independent of the temperature of magnetization. The disappearance of the residual magnetization found at intermediate temperatures is apparently related to the destruction of the magnetic field-induced ferromagnetic ordering (which contains an additional contribution of the rare-earth sublattice).  相似文献   

14.
Common bean plants were grown in soil and irrigated with water solutions containing different concentrations of \(\hbox{Fe}_3\hbox{O}_4\) nanoparticles (NPs) with a mean diameter close to 10 nm. No toxicity on plant growth has been detected as a consequence of Fe deficiency or excess in leaves. In order to track the \(\hbox{Fe}_3\hbox{O}_4\) NPs, magnetization measurements were performed in soils and in three different dried organs of the plants: roots, stems, and leaves. Some magnetic features of both temperature and magnetic field dependence of magnetization M(TH) arising from \(\hbox{Fe}_3\hbox{O}_4\) NPs were identified in all the three organs of the plants. Based on the results of saturation magnetization \(M_\mathrm{s}\) at 300 K, the estimated number of \(\hbox{Fe}_3\hbox{O}_4\) NPs was found to increase from 2 to 3 times in leaves of common bean plants irrigated with solutions containing magnetic material. The combined results indicated that M(TH) measurements, conducted in a wide range of temperature and applied magnetic fields up to 70 kOe, constitute a useful tool through which the uptake, translocation, and accumulation of magnetic nanoparticles by plant organs may be monitored and tracked.  相似文献   

15.
The magnetic properties of nanoporous carbon samples whose pores were loaded by nickel are described. It is shown that a sample becomes superparamagnetic for temperatures T<T C (Ni) only in the case where a noticeable fraction of Ni is contained in the nanopores. The nanopore size estimated from magnetic measurements coincides with the estimates derived earlier from small-angle x-ray scattering studies.  相似文献   

16.
Nanoparticles of solid solution Fe x Pt1?x , where 0.25≥x≥0 (?fcc lattice) with γ-Fe2O3 shell (lattice of the spinel type) were synthesised and characterised by high-resolution transmission electron microscopy, energy dispersive X-ray analysis, electron energy loss spectroscopy, Mössbauer spectroscopy and magnetometry. From the point of view of magnetic properties, such two-phase particles are interesting because their core is antiferromagnetic or paramagnetic (at very small values of x) whereas the shell is ferrimagnetic. The size of the particles was in the range of several nanometers. The Mössbauer measurements revealed a blocking temperature of about 100 K above which the particles are superparamagnetic. Towards lower temperatures, the magnetic characteristics of an ensemble of such particles show an increase of magnetic rigidity.  相似文献   

17.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

18.
The magnetic properties of magnesium–iron spinel (MgFe2O4) powdered nanoparticles obtained by glycine–nitrate synthesis are investigated by X-ray phase analysis and the NMR method. According to the results of X-ray phase analysis, the average size of the crystalline part of nanoparticles of the powder under investigation is 45 ± 4 nm. Magnetization J is determined using the formula J = (B/μ0)–H, where B and H are the induction and strength of the magnetic field in the sample, which are measured by the NMR method. The magnetic characteristics of MgFe2O4 are as follows: specific saturation magnetization Jsat = 17.52 A m2/kg, specific residual magnetization Jr = 5.73 A m2/kg, coercive force Hc = 4600 A/m, and magnetic moment Psat = 371 × 10–20 A m2 in the magnetic saturation state and Pr = 121 × 10–20 A m2 in the residual magnetization state.  相似文献   

19.
Doping of the ZnGeAs2 semiconductor with manganese has produced compositions with spontaneous magnetization and high Curie temperatures of up to 367 K for the composition 3.5 wt% Mn. Their magnetic properties are characteristic of spin glasses at temperatures T < T S and magnetic fields H < 11 kOe. In stronger fields, the spin glass state transforms into a phase with a spontaneous magnetization 4–5 times weaker than that to be expected under ferromagnetic ordering of all Mn ions. This is obviously a singly-connected ferromagnetic phase containing regions with frustrated bonds. The frustrated regions and the spin glass phase have inclusions of noninteracting ferromagnetic clusters, because these regions and the spin glass phase at low temperatures exhibit a strong increase in the magnetization M, with the dependence M(T) being described by the Langevin function. Measurements of the electrical resistivity ρ and the Hall effect have revealed that, for T < 30 K, the resistivity ρ of compositions with 1.5 and 3.5 wt % Mn is higher that at 30 K, which makes superexchange dominant and gives rise to the onset of the spin glass state. The nonuniform distribution of Mn ions in the spin glass phase accounts for the existence of isolated ferromagnetic clusters, their ferromagnetism being generated by carrier-mediated exchange. As the temperature increases still more, the increase in the mobility occurs faster than the decrease in the concentration, thus promoting an enhancement of the carrier-mediated exchange and growth of the ferromagnetic clusters in size, which at T = T S come in contact. This signifies a transition from a multiply-to a singly-connected ferromagnetic phase, which contains microregions with frustrated bonds.  相似文献   

20.
The field and temperature variation of the susceptibilityχ for several highly dilute, frozen Fe-amalgam samples have been measured. The experimental results suggest, that some of the Fe-particles are superparamagnetic and others stable-ferromagnetic. It should then be possible to estimate the critical grain volumeν k(T) as well as the grain size distribution. A comparison of our results with previous data, however, shows that our fresh samples should be regarded as being purely superparamagnetic. Several different methods of calculating the mean grain diameter yield approximately the same value between 19 Å and 21 Å. The theoretically predicted dependence of magnetization on the ratioH/T is not confirmed by our measurements. These discrepancies seem to be caused chiefly by interactions between the iron particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号