首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
Intermoiety electronic interactions in the singlet and triplet excimer states of triply bridged [3.3.n](3,6,9)carbazolophanes ([3.3.n]Cz, n=3-6) were studied by emission and transient absorption measurements. In these [3.3.n]Cz molecules, the dihedral angle and the separation distance r between fully overlapped two carbazole rings change systematically from nearly parallel (n=3, r=3.35 A) to oblique (n=6, r=4.03 A). In rigid glass at 77 K, [3.3.n]Cz (n=3, 4) (r<4 A) exhibited red-shifted and structureless excimer fluorescence and phosphorescence while [3.3.n]Cz (n=5, 6) (r>4 A) exhibited monomer-like vibrational fluorescence and phosphorescence. In solution at 130 K, all [3.3.n]Cz molecules exhibited an excimeric fluorescence band while [3.3.5]Cz still exhibited monomer-like phosphorescence. Transient absorption spectra measured at 294 K exhibited local excitation and charge-transfer bands for all [3.3.n]Cz molecules in the excited singlet and triplet states, suggesting that not only singlet but also triplet excimers of carbazole are formed at room temperature. Furthermore, the singlet-triplet energy gap decreased with the decrease in n, suggesting that electrons are effectively delocalized over the two carbazole moieties. These findings showed that both singlet and triplet excimers of carbazole are formed with a separation distance shorter than about 4 A and are most stable in the parallel-sandwich structure and that the configurational mixing between exciton resonance and charge resonance states plays an essential role in the formation of singlet and triplet excimers of carbazole.  相似文献   

2.
[3.3](4,4′)Biphenylophane (BPP) is synthesized, and the photophysical and photochemical properties are studied by means of emission and transient absorption measurements. BPP emits excimer fluorescence at 295 and 77 K, and phosphorescence from the locally-excited (LE) triplet state at 77 K. Based on the transient absorption spectra of BPP, it is found that the excimeric triplet state of BPP is produced along with the LE triplet at 295 and 77 K. The triplet excimer of BPP is shown to be formed via intersystem crossing from the singlet excimer state, and concluded to be non-phosphorescent.  相似文献   

3.
Time-resolved fluorescence and phosphorescence study of hypericin (Hyp) in complex with low-density lipoproteins (LDL) as well as the evolution of singlet oxygen formation and annihilation after illumination of Hyp/LDL complexes at room temperature are presented in this work. The observed shortening of the fluorescence lifetime of Hyp at high Hyp/LDL molar ratios (>25:1) proves the self-quenching of the excited singlet state of monomeric Hyp at these concentration ratios. The very short lifetime (∼0.5 ns) of Hyp fluorescence at very high Hyp/LDL ratios (>150:1) suggests that at high local Hyp concentration inside LDL molecules fast and ultrafast nonradiative decay processes from excited singlet state of Hyp become more important. Contrary to the lifetime of the singlet excited state, the lifetime (its shorter component) of Hyp phosphorescence is not dependent on Hyp/LDL ratio in the studied concentration range. The amount of singlet oxygen produced as well as the integral intensity of Hyp phosphorescence after illumination of Hyp/LDL complexes resemble the dependence of the concentration of molecules of Hyp in monomeric state on Hyp/LDL until a concentration ratio of 60:1. This fact confirms that only monomeric Hyp is able to produce the excited triplet state of Hyp, which in aerobic conditions leads to singlet oxygen production. The value of singlet oxygen lifetime (∼8 μs) after its formation from the excited triplet state of Hyp in LDL proves that molecules of singlet oxygen remain for a certain period of time inside LDL particles and are not immediately released to the aqueous surrounding. That Hyp exists in the complex with LDL in the monodeprotonated state is also demonstrated.  相似文献   

4.
[reaction: see text] The asymmetric induction facilitated by a chiral auxiliary during the photoisomerization of trans,trans-2,3-diphenylcyclopropane derivatives depends on the medium (solution vs zeolite) and the reactive state (singlet vs triplet). Within zeolites, direct excitation most likely proceeds via a zwitterionic intermediate, while triplet sensitization most likely proceeds via a diradical intermediate.  相似文献   

5.
The triplet states of pheophorbide a and pheophytin a were studied in several environments by direct measurement of the phosphorescence of the pigments and photosensitized singlet oxygen (1O2) luminescence. The spectra, lifetimes and quantum yields of phosphorescence and the quantum yields of 1O2 generation were determined. These parameters are similar for monomeric molecules of both pigments in all the environments studied. Aggregation of the pigment molecules leads to a strong decrease in the phosphorescence and 1O2 luminescence intensities, which is probably due to a large decrease in the triplet lifetime and triplet quantum yield in the aggregates. The results obtained for pheophorbide a and pheophytin a are compared with those previously reported for chlorophyll alpha. The data suggest that the photodynamic activity of the pigments in living tissues is probably determined by the monomeric pigment molecules formed in hydrophobic cellular structures. Aggregated molecules seem to have a much lower activity.  相似文献   

6.
We have examined the adsorption of n-pentane in several representative zeolites such as silicalite (MFI), ferrierite (FER), zeolite L (LTL), and faujasite zeolites with FAU structure including siliceous Y (Si-Y) and Na-Y by using FT-Raman spectroscopy in combination with thermogravimetric analysis (TGA) with particular attention being paid to the conformational and dynamic behavior of the guest molecule. The results indicate that the framework topology mainly dictates the conformation of n-pentane in a zeolite. For the zeolites with channel systems such as silicalite, ferrierite, and zeolite L, the population of the all-trans conformer increases upon loading, given that the geometry of the isomer fits better in the channel. When n-pentane is adsorbed in zeolites with a large cavity, such as Si-Y and Na-Y, the distribution of the all-trans (TT) and trans-gauche (TG) conformers is similar to that of pure liquid, suggesting that the large supercage in the framework imposes minimal effect on the conformational equilibrium. The dynamics of the guest molecule is, however, influenced significantly by the existence of cations. Adsorption of n-pentane in a siliceous framework such as silicalite and Si-Y results in extensive molecular motion at room temperature, the degree of which decreases with decreasing temperature. In zeolites ferrierite, L, and Na-Y, the presence of cations in the framework markedly hinders the overall molecular motion. The cations clearly play a role in the observed static disorder of the guest molecule in zeolite L. Important information regarding the location of the n-pentane molecules within silicalite and ferrierite is also obtained.  相似文献   

7.
White light electroluminescence (EL) was obtained by mixing emission from singlet and triplet excimers from a single poly (n-vinylcarbazole) (PVK) spin cast layer after irradiation of the solution with UV light. With increased UV light irradiation, the intensity from the triplet excimer (red-630 nm) of PVK increased compared with that of the singlet excimer (blue-460 nm) due to an increased population of both adjacent benzene rings being aligned with one another (fully overlapping) versus only one of the adjacent benzene rings being aligned (partially overlapping). The emission color changed from blue to white with increased UV irradiation time while the EL brightness and current density decreased and the turn-on voltage increased.  相似文献   

8.
We report that both singlet and triplet energy transfers in stilbene-cored benzophenone dendrimers (trans-BPST) took place quite efficiently. On excitation (290 nm) of stilbene group, the intramolecular singlet energy transfer from the excited core stilbene to the benzophenone part (99.7%) was confirmed by quenching of the fluorescence from the core stilbene. The benzophenone in the excited singlet state is known to undergo intersystem crossing to give its excited triplet state quantitatively. However, the very weak phosphorescence from benzophenone part in trans-BPST was observed even at 77 K. The phosphorescence intensity of trans-BPST is only 1% of that of model compound (4-methylbenzophenone) at 77 K. During the irradiation, the absorption spectra also changed due to the trans-cis isomerization. This is probably due to the ultrafast triplet energy transfer from the benzophenone to produce the triplet state stilbene.  相似文献   

9.
The photosensitization mechanism for cationic polymerizations initiated by diaryliodonium salts photosensitized by anthracene was investigated using fluorescence and phosphorescence spectroscopy. In situ photosensitizer fluorescence measurements confirmed that the photosensitization reaction proceeds by an electron transfer process. Transient phosphorescence studies demonstrated that electron transfer occurred from the triplet excited state of anthracene to the initiator, with an intrinsic kinetic rate constant of 2 × 108 L/mol s. Further evidence for the role of the triplet state was provided by an observed seven-fold decrease in the polymerization rate upon addition of a triplet state quencher. Finally, numerical solution of the photophysical kinetic equations indicated that the triplet state concentration was approximately three orders of magnitude higher than that of the singlet state, and that 94-96% of the active cationic centers are produced by reaction of the initiator with the triplet state. These results indicate that the electron transfer occurs primarily from the triplet state of anthracene, with the singlet state providing only a minor contribution to the photosensitization reaction. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Illumination by light at 750 nm depopulates the triplet state of phenanthrene d-10 dissolved in crystalline benzophenone. The effect is revealed by studies of the kinetics of formation and disappearance of triplets and by a direct spectroscopic observation. Neither the benzophenone nor the phenanthrene alone in the lowest triplet or singlet state absorbs at 750 nm. The effect may be produced by a phenanthrene triplet-benzophenone excimer.  相似文献   

11.
《Chemical physics》2005,308(1-2):93-102
The absorption and emission spectroscopic behaviour of cyclometalated fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is studied at room temperature. Liquid solutions, doped films, and neat films are investigated. The absorption cross-section spectra including singlet–triplet absorption, the triplet–singlet stimulated emission cross-section spectra, the phosphorescence quantum distributions, the phosphorescence quantum yields and the phosphorescence signal decays are determined. In neat films fluorescence self-quenching occurs, in diluted solid solution (polystyrene and dicarbazole-biphenyl films) as well as deaerated liquid solution (toluene) high phosphorescence quantum yields are obtained, and in air-saturated liquid solutions (chloroform, toluene, tetrahydrofuran) the phosphorescence efficiency is reduced by triplet oxygen quenching. At intense short-pulse laser excitation the phosphorescence lifetime is shortened by triplet–triplet annihilation. No amplification of spontaneous emission in the phosphorescence spectral region was observed indicating higher excited-state absorption than stimulated emission.  相似文献   

12.
Poly(4-vinylbiphenyl) and copolymers of methyl methacrylate and 4-vinylbiphenyl show both monomeric (λmax = 325 nm) and excimer (λmax = 380 nm) fluorescence. The quantum yield of excimer emission increases and the monomeric emission decreases with increase in the fraction of vinylbiphenyl units in the copolymer. The decrease of the monomeric emission is closely related to a decrease in singlet lifetime. These results are interpreted in terms of a kinetic controlled excimer formation. Comparison of the emission in the homo and copolymers with that of the dimeric model compound shows that excimer formation in the polymer strongly depends upon the possibility of energy migration along sequences of vinylbiphenyl units. This conclusion is considered as of particular relevance due to the change in geometry of the biphenyl unit upon excitation.  相似文献   

13.
Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.  相似文献   

14.
From the perspective of asymmetric induction, the photochemistry of 24 chiral esters and amides of cis-2,3-diphenylcyclopropane-1-carboxylic acid from excited singlet and triplet states has been investigated within zeolites. The chiral auxiliaries placed at a remote location from the isomerization site functioned far better within a zeolite than in solution. Generally, chiral auxiliaries with an aromatic or a carbonyl substituent performed better than the ones containing only alkyl substituents. A model based on cation-binding-dependent flexibility of the chiral auxiliary accounts for the observed variation in de between aryl (and carbonyl) and alkyl chiral auxiliaries within zeolites. Cation-dependent diastereomer switch was also observed in select examples.  相似文献   

15.
The lowest triplet state of tris(8-hydroxyquinoline)aluminium(III) (Alq3) has been prepared by pulse radiolysis/energy transfer from appropriate donors in benzene solutions and has an absorption maximum around 510 nm with a lifetime of about 50 mus. It is quenched by molecular oxygen, leading to singlet oxygen formation. From flash photolysis and singlet oxygen formation measurements, a quantum yield of triplet formation of 0.24 was determined for direct photolysis of the complex. A value of 2.10 +/- 0.10 eV was determined for the energy of the lowest triplet state by energy transfer studies and was confirmed by phosphorescence measurements on Alq3, either in the heavy atom solvent ethyl iodide or photosensitized by benzophenone in benzene. Dexter (exchange) energy transfer was observed from triplet Alq3 to platinum(II) octaethylporphyrin.  相似文献   

16.
Photoaquation in compounds II and III by direct excitation into a photoactive triplet excited state is reported. The location of the singlet to triplet transition in compound III is estimated by a combination of the action spectrum for photoaquation in the region between 520 and 600 nm and the phosphorescence spectrum at 77 K. The significant increment of the reactivity (10-fold) of the triplet states in II and III as compared to that in I is explained in terms of increasing sigma-donation from the phen ligands stabilizing the pentacoordinated rhodium intermediate formed by chloride expulsion.  相似文献   

17.
Poly(acene)s are significant compounds for various electronic applications. A clean, one-step synthesis involves alpha-diketones (2-4), which undergo facile Strating-Zwanenburg photodecarbonylation producing the corresponding poly(acene)s (i.e., anthracene, hexacene, and heptacene, respectively). Compounds 2-4 show weak fluorescence (lambdaF=approximately 525-530 nm and PhiF=approximately 0.1-0.4%) and phosphorescence (lambdaPh=approximately 565-570 nm) and have a small singlet-triplet energy gap (S1-T1 gap, approximately 4 kcal/mol) that facilitates rapid intersystem crossing from the singlet to the triplet state. Both the singlet states (tauS=approximately 20-218 ps) and the triplet states (tauT=approximately 370 ps to <7 ns) of 2-4 are short-lived, while the decarbonylation of 2-4 is a rapid process occurring within 7 ns from both the singlet and the triplet manifolds. The nanosecond laser flash photolysis of 4 also reveals the T-T absorption of heptacene (580 nm, tau=approximately 11 micros).  相似文献   

18.
The characterization of the excited states of 9,10-phenanthrenequinone (PQ) and its derivatives substituted in the 3 and 6 positions with methoxy (PQ1), chloro (PQ2), methyl (PQ3) and fluoro (PQ3) was carried out using steady-state UV-Visible absorption spectroscopy and phosphorescence emission spectroscopy at room temperature and at 77 K. Nanosecond laser flash photolysis was used to obtain the time resolved spectra from the triplet emission decays. The compounds presented phosphorescence in benzene, chlorobenzene and acetonitrile solutions at room temperature and at 77 K. The phosphorescence of the methoxy derivative, however, was observed only at low temperature. The derivatives showed a slightly higher triplet energy than PQ. The Hammett plots were applied to correlate singlet and triplet energies with sigma values that account for resonance and the radical character. It is observed that singlet and triplet energies increase with electron donating groups.  相似文献   

19.
Multireference complete active space self-consistent-field (CASSCF) and multireference CASSF second-order perturbation theory (MSCASPT2) calculations were performed on the ground state and a number of low-lying excited singlet and triplet states of chlorobenzene. The dual phosphorescence observed experimentally is clearly explained by the MSCASPT2 potential-energy curves. Experimental findings regarding the dissociation channels of chlorobenzene at 193, 248, and 266 nm are clarified from extensive theoretical information including all low-energy potential-energy curves.  相似文献   

20.
The nature of the lowest triplet configuration of flavins   总被引:1,自引:0,他引:1  
Abstract— The phosphorescence spectrum of riboflavin has been reexamined at 77°K in an ethylene glycol: water matrix. The phosphorescence occurs at approximately the 605 nm (ca. 2-·05 eV) region, in reasonable agreement with the theoretical calculations of 1·6–1·8 eV [21]. The emission was found to be negatively polarized, and to have a relatively long lifetime (0·56 sec). On the basis of this data and additional theoretical results, it is concluded that the lowest triplet of riboflavin is of 3(τ,τ*) type. Upon addition of potassium iodide, the phosphorescence emission is enhanced through spin-orbit perturbation. The presence of oxygen (atmospheric pressure) in the frozen glass apparently has no effect on the emission. The phosphorescence spectra of alloxazine are also presented. Results of the present work have been applied to the photodephosphorylation of menadiol diphosphate in elucidating its mechan ism involving the riboflavin triplet and singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号