首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum nanoparticles/carbon nanotubes (Ptnano/CNTs) were rapidly synthesized by microwave radiation, and applied for the oxidative determination of arsenic(III). The transmission electron microscopy (TEM) revealed the size of synthesized Pt nanoparticles with nominal diameter of 15 ± 3 nm. Ptnano/CNTs modified glassy carbon electrode (Ptnano/CNTs/GCE) exhibited better performance for arsenic(III) analysis than that of Pt nanoparticles modified GCE (Ptnano/GCE) by electrochemical deposition or Pt foil electrode. Excellent reproducibility of the Ptnano/CNTs/GCE was obtained with the relative standard deviation (RSD) of 3.5% at 20 repeated analysis of 40 μM As(III), while the RSD was 9.8% for Ptnano/GCE under the same conditions. The limit of determination (LOD) of the Ptnano/CNTs/GCE was 0.12 ppb, which was 1–2 orders of magnitude lower than that of Ptnano/GCE or Pt foil electrode.  相似文献   

2.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   

3.
Aligned carbon nanotubes (ACNTs) electrode has been developed for the direct protein electrochemistry and enzyme-biosensor study involving two types of nanoparticles. Pt nanoparticles (Ptnano) were electro-modified on the ACNTs’ each tube, greatly increasing the electrode surface area for locating protein and also its electronic transfer ability. Glucose oxidase (GOD) with chitosan (CS) and CdS nanoparticles electrochemically coated on each tube of ACNTs–Ptnano by the electrodeposition reaction of CS when pH value passing its pKa. The CdS nanoparticles between ACNTs electrode and GOD have stimulated the GOD’s direct electron transfer during its redox reaction of FAD/FADH2. The CS–GOD–CdS/ACNTs–Ptnano electrode also offer sensitive response to the substrate of glucose with detection limit of 46.8 μM (S/N = 3) and apparent Michaelis–Menten constant of 11.86 mM.  相似文献   

4.
The authors describe an electrochemical aptamer based assay for the determination of the serine protease lysozyme in very low (pM) concentrations. The method is based on the formation of a complex between anti-lysozyme aptamer fragments and lysozyme, and on electrochemical detection by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The surface of a glassy carbon electrode was modified with a nanocomposite consisting of gold nanoparticles and electrochemically reduced graphene oxide nanosheets (AuNPs/erGO), and the thiolated aptamer was then linked to the AuNPs by self-assembly through Au-S bonds. The interaction of immobilized aptamers with lysozyme leads to the decreased peak current in DPV and increased charge transfer resistance (Rct) in EIS when using hexacyanoferrate or Methylene Blue as a redox probe. The calibration plot, when applying EIS and working at a typical voltage of ?0.22 V (vs. SCE), is linear over 1.0 to 104.3 pM concentration range, with a detection limit of 0.06 pM (at a signal-to-noise ratio of 3). The respective data for DPV are a 9.6–205.5 pM linear range with a detection limit of 0.24 pM. Depending on the redox marker applied, the method works in the “signal-off” or “signal-on” mode in DPV and EIS protocols, respectively. The sensing interface is high specific for lysozyme and not affected by other proteins. The method was applied to the determination of lysozyme in spiked diluted human serum, and the results agreed well with data obtained with a standard ELISA.
Graphical abstract The surface of a glassy carbon electrode was modified with a nanocomposite consisting of gold nanoparticles and electrochemically reduced graphene oxide nanosheets (AuNPs/erGO). Then, the thiolated aptamer was linked to the AuNPs by self-assembly through Au-S bonds. The modified electrode was applied to the determination of lysozyme with “signal off” and “signal on” strategies.
  相似文献   

5.
Na Zhou 《Talanta》2009,77(3):1021-183
A polyaniline nanofibers (PANnano)/carbon paste electrode (CPE) was prepared via dopping PANnano in the carbon paste. The nanogold (Aunano) and carbon nanotubes (CNT) composite nanoparticles were bound on the surface of the PANnano/CPE. The immobilization and hybridization of the DNA probe on the Aunano-CNT/PANnano films were investigated with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) using methylene blue (MB) as indicator, and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as redox probe. The voltammetric peak currents of MB increased dramatically owing to the immobilization of the probe DNA on the Aunano-CNT/PANnano films, and then decreased obviously owing to the hybridization of the DNA probe with the complementary single-stranded DNA (cDNA). The electron transfer resistance (Ret) of the electrode surface increased after the immobilization of the probe DNA on the Aunano-CNT/PANnano films and rose further after the hybridization of the probe DNA. The remarkable difference between the Ret value at the DNA-immobilized electrode and that at the hybridized electrode could be used for the label-free EIS detection of the target DNA. The loading of the DNA probe on Aunano-CNT/PANnano films was greatly enhanced and the sensitivity for the target DNA detection was markedly improved. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene and the polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from transgenically modified beans were determined with this label-free EIS DNA detection method. The dynamic range for detecting the PAT gene sequence was from 1.0 × 10−12 mol/L to 1.0 × 10−6 mol/L with a detection limit of 5.6 × 10−13 mol/L.  相似文献   

6.
In this work, we present the application of an exfoliated graphite electrode modified with gold nanoparticles (AuNPs) for the detection of As(III) in acidic media. Gold nanoparticles were deposited on the surface of an exfoliated graphite electrode by electrodeposition at a potential window of ?0.2 V to 1.2 V. This was followed by activation in 0.5 M H2SO4 with 10 cycles from 0.6 V to 1.4 V. The modification of exfoliated graphite (EG) showed an increased electroactive surface area of the electrode and improved peak current output in a Fe(CN)63?/4? redox probe. EG‐AuNPs electrode was used to detect As(III) in 1.0 M HNO3 using square wave anodic stripping voltammetry (SWASV) technique at optimum conditions of pH 3, deposition potential of ?0.8 V, deposition time of 180 s, frequency of 5 Hz and pulse amplitude of 50 mV. The EG‐AuNPs electrode detected As(III) in solution to a limit of 0.58 ppb with regression of 0.9993. The method reported is simple, cheap and possesses good reproducibility. The developed electrochemical sensor was applied in the detection of As (III) in an industrial real water sample. The results of the real water sample analysis from the developed method are comparable with the inductively coupled plasma – optical emission spectroscopy (ICP‐OES) results.  相似文献   

7.
A gold (Au) nanoparticle-modified graphite pencil electrode was prepared by an electrodeposition procedure for the sensitive and rapid flow injection amperometric determination of hydrazine (N2H4). The electrodeposited Au nanoparticles on the pretreated graphite pencil electrode surface were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammograms showed that the Au nanoparticle-modified pretreated graphite pencil electrode exhibits excellent electrocatalytic activity toward oxidation of hydrazine because the highly irreversibly and broadly observed oxidation peak at +600?mV at the pretreated graphite pencil electrode shifted to ?167?mV at the Au nanoparticle pretreated graphite pencil electrode; in addition, a significant enhancement in the oxidation peak current was obtained. Thus, the flow-injection (FI) amperometric hydrazine sensor was constructed based on its electrocatalytic oxidation at the Au nanoparticle-modified pretreated graphite pencil electrode. The Au nanoparticle-modified pretreated graphite pencil electrode exhibits a linear calibration curve between the flow injection amperometric current and hydrazine concentration within the concentration range from 0.01 to 100?µM with a detection limit of 0.002?µM. The flow injection amperometric sensor has been successfully used for the determination of N2H4 in water samples with good accuracy and precision.  相似文献   

8.
Platinum nanoparticles (Ptnano) decorated multiwalled carbon nanotubes (MWCNTs)–1‐octyl‐3‐methylimidazolium hexafluorophosphate ([omim][PF6]) composite material (MWCNTs‐Ptnano‐[omim][PF6]) was fabricated and characterized for the first time. In the presence of [omim][PF6], more Ptnano could deposit on MWCNTs. The average diameter of the deposited Ptnano was about 5 nm. The composite material film coated glassy carbon electrode (GCE) exhibited sensitive voltammetric response to theophylline (TP). Under the optimized conditions (i.e., preconcentration for 2 minutes on open circuit in 0.10 M pH 3.0 phosphate buffer), the anodic peak current of TP at about 1.1 V (vs. SCE) was linear to TP concentration over the range of 1.0×10?8–1.0×10?5 M. The detection limit was estimated to be 8.0×10?9 M. The modified electrode was successfully applied to the determination of TP in medicine tablet and green tea. In addition, the voltammetric responses of hypoxanthine (HX), xanthine (Xan) and uric acid (UA) on the MWCNTs‐Ptnano‐[omim][PF6]/GCE were also discussed.  相似文献   

9.
In this study, a functionalized nanocomposite-based electrochemiluminescence (ECL) sensor for detecting thrombin was developed. First, Ru(bpy)32+/β-cyclodextrin-Au nanoparticles (β-CD-AuNPs)/nanographene (NGP) composites were used to modify the glassy carbon electrode (GCE) surface, and then aptamers (TBA1 and TBA2 with a 1:1 M ratio) were labeled with ferrocene (Fc) acting as the probes and were attached to the composite via the host–guest recognition between β-CD and Fc. In the absence of thrombin, the quenching of Fc to [Ru(bpy)3]2+ was maintained, and “signal-off” ECL was observed. However, because of the specific combination of the aptamer probes and thrombin, the configuration of aptamer probes changed and escaped from the electrode surface once thrombin appears, which results in the quenching disappearance, and the ECL signal was changed from “off” to “on.” Meanwhile, the application of nanocomposites amplified the effect of “signal-on.” By this strategy, thrombin was detected with high sensitivity and with a detection limit down to 0.23 pM. Moreover, the relatively simple ECL sensor exhibited excellent reproducibility with at least 6 cycles of recovering the original signal.  相似文献   

10.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

11.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

12.
A novel complex material was fabricated by three steps. In the first step, gold nanoparticle (Aunano) was prepared with the method of chemistry and dialysis. In the second step, 4‐aminothiophenol (AT) was encapsulated in the cavity of β‐cyclodextrin and formed inclusion complex, cyclodextrin/4‐aminothiophenol (CD/AT). And then inclusion complex was adsorbed to the surface of Aunano based on the bond of Au‐S interaction. In the last step, a complex material, cyclodextrin/poly(4‐aminothiophenol)‐Au nanoparticles (CD/PAT‐Aunano) was obtained by the polymerizing in the acid solution initiated by chlorauric acid. The CD/PAT‐Aunano has spherical nanostructure with the average diameter of 55 nm. Glucose oxidase (GOx) was anchored with this complex material and direct electrochemistry of GOx was achieved. A couple of stable and well‐defined redox peaks were observed with the formal potential (E0′) of ‐0.488 V (vs. SCE) in a pH 6.98 buffer solution. The GOx modified electrode also exhibited an excellent electrocatalytic activity to the reduction of glucose, a linearity range for determination of glucose is from 0.25 mM to 16.0 mM with a detection limit of 0.09 mM (S/N = 3). This protocol had potential application to fabricate the third‐generation biosensor.  相似文献   

13.
A gold nanoparticles-dihexadecyl hydrogen phosphate (DHP) film on a glassy carbon electrode (GCE) was fabricated. Gold nanoparticles were dispersed into DHP solution to give a homogeneous and stable suspension. A stable and uniform Aunano-DHP film was obtained on the GCE surface using a convenient coating technique. This nanostructured electrode exhibited excellent sensing for the oxidation of glucose. A novel electroanalytical method for the determination of glucose was developed.  相似文献   

14.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

15.
The remarkable enhancement of electron transfer on screen-printed carbon electrodes (SPCEs) with modification by iron nanoparticles (Fenano), coupled with Fe(CN)6 4−/3− redox species, was characterized with an increase of electroactive area (A ea) at electrode surface together with a decrease of heterogeneous electron transfer rate constant (k°) in the system. Hence, Fenano-Fe(CN)6 3− SPCEs with deposition of glucose oxidase (GOD) demonstrated a higher sensitivity to various glucose concentrations than Fe(CN)6 3−/GOD-deposited SPCEs. In addition, an inhibited diffusion current from cyclic voltammograms was also observed with an increase in redox concentration and complicated the estimation of A ea. Further analysis by the electrochemical impedance method, it was shown that this effect might be resulted from the electrode surface blocking by the products of activated complex decomposition.  相似文献   

16.
The unique physico-chemical properties of gold nanoparticles portrayed in their chemical stability, the size-dependent electrochemistry, and the unusual optical properties make them suitable modifiers of various surfaces used in the fields of optical devices, electronics, and biosensors. In this work we present two different methods to obtain metallic gold nanoparticles at a liquid–liquid interface, and to control their growth by adjusting the experimental conditions. Decamethylferrocene (DMFC), used as an oxidizable compound dissolved in an organic solvent that is spread as a thin film on the surface of graphite electrode, serves as a redox partner to exchange electrons across the liquid–liquid interface with the other redox counter-partner [AuCl4]? present in the conjoined water phase. The interfacial electron transfer between the DMFC and the [AuCl4]? ions leads to deposition of metallic gold nanoparticles at the liquid–liquid interface. The structure and features of the deposited Au nanoparticles were studied by means of microscopic and voltammetric techniques. The morphology of the Au deposit depends on the concentration ratio of redox partners and both electrode and liquid–liquid interfacial potential differences. Depending on whether the Au deposit was obtained by ex situ (at open circuit potential) or by “in situ” (by cycling of the electrode potential) approach, we observed quite different effects to the ion transfer reactions probed by the thin-film electrode set-up. The possible reasons for the different behavior of the Au nanoparticles are discussed in terms of the structure and the properties of the obtained Au deposit. In separate experiments, we have demonstrated catalytic effects of the Au nanoparticles towards enhancing the electron transfer between DMFC and two aqueous redox substrates, hexacyanoferrate and hydrogen peroxide.  相似文献   

17.
We report on a graphite electrode onto which polypyrrole was electrodeposited and then doped with chromate ion. This electrode can serve as a Cr(VI)-selective solid-state electrode. Electropolymerization of pyrrole was performed potentiostatically at 0.80?V (vs. SCE) using battery graphite as the working electrode in a solution containing 0.10?M of pyrrole and 20?mM of chromate. A platinum wire was used as an auxiliary electrode. The new electrode displays high selectivity, a very wide dynamic range, a sufficiently fast response time and a good shelf lifetime. It shows a linear Nernstian response over 1.0?×?10?6 to 1.0?×?10?1?M concentration range (with a slope of 26.55?±?0.20?mV per log of concentration). The detection limit is 0.5?μM, and the pH optimum is 7.0.
Figure
A highly selective solid state Cr(VI) ion-selective electrode based on polypyrrole conducting polymer was prepared. The introduced Cr(VI) micro sensor electrode exhibited linear response over a wide working concentration range with a high regression coefficient and a near Nernstian slope. The SEM image of PPy/CrO4 thin film shows unevenly distributed nanoparticles.  相似文献   

18.
Nanotechnology has become one of the most exciting frontier fields in analytical chemistry. The huge interest in nanomaterials, for example in chemical sensors and catalysis, is driven by their many desirable properties. Although metal is a poor catalyst in bulk form, nanometre-sized particles can exhibit excellent catalytic activity due to their relative high surface area-to-volume ratio and their interface-dominated properties, which significantly differ from those of the bulk material. The integration of metal nanoparticles into thin film of permselective membrane is particularly important for various applications, for example in biological sensing and in electrocatalysis. We have already established different techniques to design permselective membrane-coated chemically modified electrodes with incorporated redox molecules for electrocatalytic, electrochromic and sensor applications. Recently, we have prepared nanostructured platinum and copper (represented Mnano, M = Pt and Cu) modified GC/Nafion electrodes (GC/Nf/Mnano) and characterized by using AFM, XPS, XRD and electrochemical techniques. The nanostructured Mnano modified electrodes were utilized for efficient electrocatalytic selective oxidation of neurotransmitter molecules in the presence of interfering species such as ascorbic acid (AA) and uric acid (UA). It has been also shown that the modified electrodes could be used as sensors for the detection of submicromolar concentrations of biomolecules with practical applications to real samples such as blood plasma and dopamine hydrochloride injection solution. The GC/Cunano electrode has been used for catalytic reduction of oxygen.  相似文献   

19.
For the first time, carbon screen‐printed electrodes (CSPE) modified with bismuth nanoparticles have been used to determine sulfide ions with stripping voltammetry (SV) by formation of sparingly soluble compounds with the electrode material. The impact of weight, degree of bismuth dispersion on CSPE surface, and Bi2S3 accumulation parameters on the sensitivity of the sensor have been studied. It has been established that bismuth nanoparticles (Binano) as agglomerates of about 180 nm exhibit the optimum sensory properties. The linear concentration range has been observed over the interval of 0.93–5 µM sulfide ions during the accumulation time of 75 s. A detection limit of 0.15 µM sulfide ions was achieved.  相似文献   

20.
The syntheses and structures of two new ZnII complexes, a 2D graphite‐like layer {[Zn(PIA)H2O] ? H2O}n ( 1 ) and an independent 1D single‐walled metal–organic nanotube (SWMONT) {[Zn2(PIA)2(bpy)2] ? 2.5 H2O ? DMA}n ( 2 ), have been reported based on a “Y”‐shaped 5‐(pyridine‐4‐yl)isophthalic acid ligand (H2PIA). Interestingly, the 2D graphite‐like layer in 1 can transform into the independent 1D SWMONT in 2 with addition of 2,2′‐bipyridine (bpy), which represents the first successfully experimental example of an independent 1D metal–organic nanotube generated from a 2D layer by a “rolling‐up” mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号