首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A thiosemicarbazone Cu(II) complex anchored to a polystyrene framework has been synthesized and characterized by analytical and spectroscopic techniques. The complex was found to be a highly active catalyst for the oxidation of various organic substrates including alkenes and alcohols using H2O2 as oxidant. The reaction conditions were optimized with respect to temperature, solvent, oxidant, catalyst amount, and substrate to peroxide ratio. The heterogeneous catalyst was reused five times without significant loss of activity. A comparison between the catalytic activities of this polymer-supported Cu(II) complex and its homogeneous analogue was carried out.  相似文献   

2.
The hydrogen peroxide decomposition kinetics were investigated for both “free” iron catalyst [Fe(II) and Fe(III)] and complexed iron catalyst [Fe(II) and Fe(III)] complexed with DTPA, EDTA, EGTA, and NTA as ligands (L). A kinetic model for free iron catalyst was derived assuming the formation of a reversible complex (Fe–HO2), followed by an irreversible decomposition and using the pseudo‐steady‐state hypothesis (PSSH). This resulted in a first‐order rate at low H2O2 concentrations and a zero order rate at high H2O2 concentrations. The rate constants were determined using the method of initial rates of hydrogen peroxide decomposition. Complexed iron catalysts extend the region of significant activity to pH 2–10 vs. 2–4 for Fenton's reagent (free iron catalyst). A rate expression for Fe(III) complexes was derived using a mechanism similar to that of free iron, except that a L–Fe–HO2 complex was reversibly formed, and subsequently decayed irreversibly into products. The pH plays a major role in the decomposition rate and was incorporated into the rate law by considering the metal complex specie, that is, EDTA–Fe–H, EDTA–Fe–(H2O), EDTA–Fe–(OH), or EDTA–Fe–(OH)2, as a separate complex with its unique kinetic coefficients. A model was then developed to describe the decomposition of H2O2 from pH 2–10 (initial rates = 1 × 10−4 to 1 × 10−7 M/s). In the neutral pH range (pH 6–9), the complexed iron catalyzed reactions still exhibited significant rates of reaction. At low pH, the Fe(II) was mostly uncomplexed and in the free form. The rate constants for the Fe(III)–L complexes are strongly dependent on the stability constant, KML, for the Fe(III)–L complex. The rates of reaction were in descending order NTA > EGTA > EDTA > DTPA, which are consistent with the respective log KMLs for the Fe(III) complexes. Because the method of initial rates was used, the mechanism does not include the subsequent reactions, which may occur. For the complexed iron systems, the peroxide also attacks the chelating agent and by‐product‐complexing reactions occur. Accordingly, the model is valid only in the initial stages of reaction for the complexed system. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 24–35, 2000  相似文献   

3.
The decomposition reaction of hydrogen peroxide by Fe(III)- and Co(III)-2,9,16,23-tetracarboxyphthalocyanine supported on poly(2-vinylpyridine-CO-styrene) and the quaternized one, was studied at pH 7.0 in aqueous media. The kinetics of this reaction was also investigated at pH 7.0 by measuring the initial velocity V0 of the increasing concentration of O2 with a Warburg respirometer. The reaction proceeded according to the catalaselike mechanism. Fe(III)-2,9,16,23-tetracarboxyphthalocyanine supported on poly(2-vinylpyridine-CO-styrene) was a remarkably effective catalyst for a H2O2 decomposition reaction. The coordination sphere around the Fe(III)-phthalocyanine ring was characterized by electronic and ESR spectroscopy. Fe(III)-phthalocyanine supported on the copolymer dispersed in water was the five-coordinated, high-spin type. A typical competitive inhibition in respect of H2O2 by CN- was observed. ESR spectrum of this system showed the low spin iron(III) in the octahedral ligand field. The polymer coils hindered undesirable dimerization of metal-phthalocyanine molecules by the shielding effect.  相似文献   

4.
The mechanism of photocatalytic splitting of H2O into H2 and O2 on Pt/KTa(Zr)O3 modified with various porphyrinoids was investigated. The photocatalytic activity of KTaO3 catalysts is improved by dye modification. Cyanocobalamin (vitamin B12) is the most effective for improving water‐splitting activity, and the formation rates of H2 and O2 achieved values of 575 and 280 μmol gcat.?1 h?1, respectively. X‐ray photoelectron spectroscopy spectra of KTa(Zr)O3 photocatalysts showed that Pt loaded onto dye‐modified KTaO3 was slightly oxidized and had low catalytic activity for the H2 oxidation reaction. Photoluminescence (PL) spectra of KTaO3 catalysts suggested that excitation energy was transferred between KTaO3, tetraphenylporphyrinatochromium(III) (Cr–TPP), and the Pt cocatalyst. The wavelength dependence of the activity of dye‐modified KTa(Zr)O3 photocatalysts indicated that excitation of both KTa(Zr)O3 and the dye was essential for achieving increased photocatalytic activity. This result suggests that two‐step excitation occurred in the dye‐modified KTa(Zr)O3 photocatalysts. Because the lifetime of the charge‐separated state increased, this study reveals that modification with porphyrinoids is effective for increasing water‐splitting activity.  相似文献   

5.
A new kind of hybrid catalyst, TiO2-carbon nanotubes, was prepared via sol-gel method for the first time. Its photocatalytic activity in the photodegradation of acridine dye aqueous solution at low concentration was tested. There was no measurable effect on the formation of crystalline phase of TiO2 catalyst with the addition of 10 wt.% carbon nanotubes to TiO2 samples. AFM photograph of TiO2-carbon nanotubes sintered at 300°C showed that the carbon nanotubes were enwrapped by TiO2, which greatly increased the adsorbing ability of the catalyst and was in favor of photocatalytic reaction. Compared with naked TiO2 powder the hybrid catalyst prepared in this way showed high efficiency in the photodecomposition of acridine dye.  相似文献   

6.
In order to improve the catalytic activity of Fenton catalyst, a composite catalyst, Fe/TiO2, with both visible-light photocatalytic and Fenton-like catalytic activities was synthesized via a brief solvothermal process. The XRD and SEM results indicated that Fe was dispersed homogeneously on the surface of TiO2 in the form of Fe2O3, and the loading of Fe did not have significant effects on the particle size and morphology of TiO2. The EDS results showed that the loading content of Fe was about 1.4 wt%. The photocatalytic results showed that the prepared Fe/TiO2 composite catalyst had excellent catalytic behaviors for terbuthylazine degradation under visible-irradiation with H2O2 assistance, the degradation ratio reached up to 90% after 120 min. The reinforced degradation performance were primarily attributable to the introduction of carrier TiO2, which expanded visible response range by H2O2 adsorption, and accelerated the cycle of Fe (Ⅱ)/Fe (Ⅲ). The fluorescent spectroscopy results revealed that the degradation process of terbuthylazine involved the generation and participation of active species such as hydroxyl radicals and superoxide radicals. This study is expected to provide a visual approach for designing a novel photo-Fenton catalyst to jointly utilize both photocatalytic and Fenton activities, which can be better applied to the actual use of organics purification in wastewater.  相似文献   

7.
张颖  王欣 《化学学报》2010,68(7):633-640
采用密度泛函理论B3LYP方法计算了一种非血红素四氮杂轮烯配合物[Fe(III)TMTAA]催化H2O2歧化的反应机理. 对二重态、四重态和六重态势能面上各驻点进行了全优化, 发现反应易于沿四重态势能面发生. 整个反应分两阶段进行, 第一阶段通过氧氧均裂形成中间体IM6和第一个水, 第二阶段经两次氢转移形成第二个水. 反应决速步骤为 O—O均裂步骤, 能垒为63.9 kJ•mol-1, 相对于自由H2O2均裂所需能垒226.7 kJ•mol-1有较大的降低. 这表明标题配合物可有效地降低标题反应的能垒, 有可能作为一种潜在的过氧化氢仿酶.  相似文献   

8.
Summary The kinetics and mechanisms of the catecholase-type biomimetic activation of O2 by the new dioximatoiron(II) complexes [Fe(Hdmed)]+, [Fe(Hdmpd)]+ and [Fe(H2dmdt)]2+ have been studied in methanol. Kinetic measurements reveal first order behavior with respect to catalyst and O2 and a saturation type dependence on the 3,5-di-tert-butylcatechol (H2dtbc) substrate. Added triethylamine increases the rate by changing the reaction mechanism. An important, hitherto unknown feature is iron(II)-enhanced base catalysis of H2dtbc oxidation, via coordination of HdtbcO2- to the Fe(II) complex present, resulting in a significant acceleration of oxidation. A mechanism involving free radicals is suggested on grounds of ESR evidence. The activity pattern of the catalyst complexes correlates with coordination number and symmetry as revealed by M?ssbauer spectra.  相似文献   

9.
The direct photocatalytic degradation of rhodamine B (RB) has been reported by thiocyanate complex of iron and hydrogen peroxide. The rate determining parameters like, pH of the medium, concentration of the complex and dye, amount of H2O2, and light intensity on the degradation process were studied in detail. The rate of photocatalytic degradation of the dye was observed spectrophotometrically and it follows pseudo-first-order kinetics.  相似文献   

10.
The catalytic oxidation of the azo dye Orange II by hydrogen peroxide in aqueous solution has been investigated using 5,10,15,20-tetrakis-[4-(diethylmethylammonio)phenyl]porphyrinato-cobalt(II) tetra iodide 1as catalyst. The oxidation reaction was followed by recording the UV–vis spectra of the reaction mixture with time at λmax = 485 nm. The factors that may influence the oxidation of Orange II, such as the effect of reaction temperature, concentration of catalyst, hydrogen peroxide and orange II have been studied. The results of total organic carbon analysis showed 52% of dye mineralization under mild reaction conditions. Residual organic compounds in the reaction mixture were identified by using Gas chromatography-mass spectrometry. The decolorization rate and mineralization of the dye has been found to increase with increase of catalyst concentration and reaction temperature. The rate of dye oxidation decreased with increasing the concentration of dye, H2O2 and at higher pH than 9. Radical scavenging measurement indicated that decolorization of Orange II by H2O2/cobalt (II) porphyrin complex 1 involved the formation of hydroxyl radicals as the active species.  相似文献   

11.
A nanoscale catalyst Fe0(FeNPs) supported on the natrolite zeolite nanoparticles (NANPs) is successfully synthesized and characterized by FT-IR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) and thermogravimetric-differential thermal analysis (TG-DTA). The photodegradation of methyl orange (MO) is studied in aqueous suspension containing the catalyst under UV irradiation and H2O2. The effect of various reaction parameters such as initial dye concentration, irradiation time, pH, H2O2 concentration and catalyst dosage on the decolorization of methyl orange is investigated. The degradation study reveals that the reactivity of the catalysts is in order of: photo-NANPs–FeNPs–H2O2 > photo-NANPs–H2O2 > photo-NANPs–FeNPs > photo-H2O2 > NANPs–FeNPs–H2O2. The results show that methyl orange can be effectively decolorized by NANPs–FeNPs via the pseudo-first-order kinetic model.  相似文献   

12.
A TiO2-coated Tunisian clay (TiO2–clay) was synthesized by a typical impregnation method. The physicochemical characterization points to a successful impregnation of titania on the clay surface. The activity of this structured catalyst was studied in the photocatalytic/photochemical oxidation of anionic reactive blue 19 (RB 19). The effect of UVA and solar irradiation (UV-solar) was studied at room temperature. TiO2–clay demonstrated an effective degradation of RB 19 under both types of irradiation. Moreover, in this study, the effects of various oxidants such as hydrogen peroxide (H2O2), potassium peroxodisulfate (K2S2O8) and sodium carbonate (Na2CO3) were thoroughly investigated. H2O2 was a promising oxidant for promoting RB 19 degradation under UVA. The kinetics of discoloration of RB 19 followed a pseudo-first-order rate law. We can remark that 20 min of UV irradiation was enough to achieve 100% discoloration of the aqueous solution. However, under UV–Vis, HPLC and chemical oxygen demand measurements indicated, that a longer reaction time (of around 45 min) was required for achieving the complete dye mineralization. The findings clearly demonstrated the applicability of this TiO2/clay catalyst for the photocatalytic oxidation of RB 19.  相似文献   

13.
A magnetized nano‐photocatalyst based on TiO2/magnetic graphene was developed for efficient photodegradation of crystal violet (CV). Scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and elemental mapping were used to characterize the prepared magnetic nano‐photocatalyst. The photocatalytic activity of the synthesized magnetic nano‐photocatalyst was evaluated using the decomposition of CV as a model organic pollutant under UV light irradiation. The obtained results showed that TiO2/magnetic graphene exhibited much higher photocatalytic performance than bare TiO2. Incorporation of graphene enhanced the activity of the prepared magnetic nano‐photocatalyst. TiO2/magnetic graphene can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, magnetized nano‐photocatalyst dosage, UV light irradiation time, H2O2 amount and initial concentration of dye on the photodegradation efficiency were evaluated and optimized. Efficient photodegradation (>98%) of the selected dye under optimized conditions using the synthesized nano‐photocatalyst under UV light irradiation was achieved in 25 min. The prepared magnetic nano‐photocatalyst can be used in a wide pH range (4–10) for degradation of CV. The effects of scavengers, namely methanol (OH? scavenger), p‐benzoquinone (O2?? scavenger) and disodium ethylenediaminetetraacetate (hole scavenger), on CV photodegradation were investigated.  相似文献   

14.
In this research,a lucunary Keggin structure,[PMo2W9O39]7- was selected as an efficient homogenous catalyst for degradation of an azo dye(direct blue 71) and a simple method was developed for degradation of DB71.The method is based on the oxidation of azo dye in the presence of a lucunary Keggin form of polyoxometalates,K7[PMo2W9O39]? 19H2O,as a homogenous catalyst at room temperature.The reaction is monitored spectrophotometrically by measuring the absorbance of dye atλ=585 nm.Some parameters including concentration of catalyst,concentration of H2O2,pH and reaction time were investigated and optimized. Results show that K7[PMo2W9O39]? 19H2O is more efficient in the presence of hydrogen peroxide.Degradation of dye in the presence of the catalyst and H2O2 could lead to the disappearance approximately 65%of dye after 60 min.But degradation for the same experiment performed in the absence of catalyst or in the absence of H2O2 was 22%or 5%respectively.Approximately 87% azo dyes has been eliminated after 90 min in the presence of catalyst,H2O2 and optimize conditions(0.6 g/L of K7[PMo2- W9O39H9H2O,0.08 mol/L hydrogen peroxide and room temperature).  相似文献   

15.
H+-restacked nanosheets and nanoscrolls peeled from K4Nb6O17 display different structures and surface characters. The two restacked samples with increased surface areas have an amazing visible-light response for the photodegradation of dyes, which is superior to commercial TiO2 (P25) and Mb2O5. By comparison, H+/nanosheets have a relatively faster photodegradation rate originated from large and smooth basal plane. The work reveals that dye adsorbed on the unfolded nanosheets can effectively harvest sunlight. Due to facile preparation, low-cost and high photocatalytic efficiency, H+/nanosheets and H+/nanoscrolls might be used for the visible light-driven degradation of organic dyes as a substitute for TiO2 in industry.  相似文献   

16.
phosphonate‐based bimetallic metal‐ organic frameworks, namely STA‐12(M1, M2) (M1, M2 = Mn, Fe, Co), show photocatalytic activity for the degradation of Rhodamine B (RhB) and Methylene blue (MB) from aqueous solution under natural sunlight irradiation. The degradation of the dyes, appears to be faster with STA‐12(Fe, Mn) than other synthesized MOFs. Thus, photo‐Fenton oxidative discoloration of dyes has been studied by H2O2 catalyzed with the STA‐12(Fe, Mn). The process is first order with respect to dyes and the synergistic index in the STA‐12(Fe, Mn)/sunlight/H2O2system reached as high as 472%. Mineralization of dyes was discussed by spectroscopic and TOC measurement. Besides, the efficiency of STA‐12(Fe, Mn) used in photocatalytic process was attentively investigated through the characterization of reactive radicals, the stability and reusability of the photocatalyst, also the effect of operational parameters such as H2O2 dosage, solution pH and initial dye concentration. This work demonstrates the first example of facilitating photo‐Fenton‐like excitation of H2O2 via phosphonate based mixed metal organic frameworks as photocatalysts and explained a new opportunity for solar‐induced AOP environmental remediation and protection.  相似文献   

17.
In this paper, three new Cu(II) Schiff base complexes with three different anions (acetate, chloride, and nitrate) were successfully synthesized and characterized by elemental analysis, mass spectra, molar conductance, FT‐IR, NMR,UV–vis spectroscopy, magnetic moment, ESR, and thermal analysis. The catalytic performances of these complexes in decolorization of azo dye, Acid Red 37, were evaluated. Copper(II) complexes were found to be an efficient catalyst for decolorization of Acid Red 37 in the presence of hydrogen peroxide. The catalytic investigation revealed that the Cu(II) complex with acetate anion (complex 1 ) performed the highest catalytic activity. The kinetics of the decolorization of AR37 with this catalyst was studied, and the observed rate constant was determined. The effects of different reaction parameters such as catalyst dosage, solution pH, initial concentration of H2O2, dye solution, and reaction temperature on the reaction rate constant were studied. The best reacting conditions should be catalyst dosage = 0.004 g, initial pH 4.0, [H2O2]0 = 0.8 M, and [AR37]0 = 1.16 M at temperature 25°C. Under these conditions, about 99% of AR37 was decolorized within 60 min. The results indicated that the Cu(II) complex with the acetate anion is a promising catalyst for wastewater treatment.  相似文献   

18.
Excessive consumption of Fe (II) and massive generation of sludge containing Fe (III) from classic Fenton process remains a major obstacle for its poor recycling of Fe (III) to Fe (II). Therefore, the MHACF‐MIL‐101(Cr) system, by introducing H2, Pd0 and MIL‐101(Cr) into Fenton reaction system, was developed at normal temperature and pressure. In this system, the reduction of FeIII back to FeII by solid catalyst Pd/MIL‐101(Cr) for the storage and activation of H2, was accelerated significantly by above 10‐fold and 5‐fold controlled with the H2‐MIL‐101(Cr) system and H2‐Pd0 system, respectively. However, the concentration of Fe (II) generated by the reduction of Fe (III) could not be detected with the only input of H2 and without the addition of MOFs material. In addition, the apparent consumption of Fe (II) in MHACF‐MIL‐101(Cr) system was half of that in classical Fenton system, while more Fe (II) might be reused infinitely in fact. Accordingly, only trace amount of Fe (II) vs H2O2 concentration was needed and hydroxyl radicals through the detection of para‐hydroxybenzoic acid (p‐HBA) as the oxidative product of benzoic acid (BA) by·OH could be continuously generated for the effective degradation of 4‐chlorophenol(4‐CP). The effects of initial pH, concentration of 4‐CP, dosage of Fe2+, H2O2 and Pd/MIL‐101(Cr) catalyst, Pd content and H2 flow were investigated, combined with systematic controlled experiments. Moreover, the robustness and morphology change of Pd/MIL‐101(Cr) were thoroughly analyzed. This study enables better understanding of the H2‐mediated Fenton reaction enhanced by Pd/MIL‐101(Cr) and thus, will shed new light on how to accelerate Fe (III)/Fe (II) redox cycle and develop more efficient Fenton system.  相似文献   

19.
 The food dye tartrazine is oxidized with peroxydisulfate in the absence and in the presence of Ag(I) and Fe(III) catalysts. In the absence of these metal ions, the reaction shows second-order kinetics, first-order in each of the reacting species. With the Ag(I) ion in the medium the reaction proceeds considerably faster, but still follows second-order kinetics. The reaction rate depends on the concentration of Ag(I) and S2O8 2−, but is independent of the concentration of the substrate. When Fe(III) acts as the catalyst, a marked enhancement in the reaction rate is observed, and the reaction proceeds through two parallel pathways, the catalyzed and the noncatalyzed. The catalyzed path follows third order kinetics, being first-order in substrate, oxidant, and catalyst concentration. Mechanisms of the noncatalyzed as well as the Ag(I) and Fe(III) catalyzed reaction systems are proposed.  相似文献   

20.
The reaction between Fe(III) and dopamine in aqueous solution in the presence of Na2S2O3 was followed through UV–Vis spectroscopy, pH and oxy-reduction potential (Eh) measurements. The formation and quick disappearing of the complex [Fe(III)HL1−]2+, HL1− = monoprotonated dopamine was observed with or without S2O3 2− at pH 3. An unexpected reaction occurs in presence of thiosulfate forming the stable anion complex [Fe(III)(L2−)2]1−, L2− = dopacatecholate (λ = 580 nm) and the auto-increasing of the pH, from 3 to 7. It was proposed that H+ and molecular oxygen are consumed by free radical thiosulfate formed during the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号