首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method for the separation and analysis of d- and l-thyroxine was developed using R(−)/S(+)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole, [R(−)/S(+)-DBD-PyNCS] as a chiral derivatization reagents. The T4 derivatives with R(−)-DBD-PyNCS were efficiently separated on a reversed-phase column with water-acetonitrile containing 0.1% formic acid (41:59, v/v) as the eluent and analyzed using ESI-MS with negative selected ion monitoring (SIM) mode. The calibration curves of both the d-T4 and l-T4 were linear over the concentration range of 0.13-13 μg/ml. The detection limits (S/N = 3) were 28 ng/ml for d-T4 and 40 ng/ml for l-T4, respectively. The relative standard deviations (RSD, n = 5) were less than 3.6% at 1.3 μg/ml for both T4 enantiomers. The proposed method was applied to the determination of l-T4 enantiomer in a pharmaceutical formulation.  相似文献   

2.
A direct and stereospecific capillary zone electrophoresis (CZE) method for quantification ibuprofen enantiomers in biological matrices: human serum and urine, has been developed. Chiral separation of the enantiomers of ibuprofen and (+)-S-indobufen [(+)-S-INDB, internal standard, IS] was obtained in an uncoated silica capillary filled with a background electrolyte (BGE), consisted of heptakis 2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD) in buffer of pH 5.0. The complete enantioselective analysis of ibuprofen and its 1-hydroxy metabolite confirmed appropriate specificity of the method. The electrophoretic parameters: electroosmotic (μEOF) and electrophoretic (μep) mobility and resolution factor (Rs) were determined. Extraction procedures with organic solvent and solid phase extraction (SPE) with C18 stationary phase for isolation of enantiomers from biological fluids were compared. SPE method for further studies was chosen. Stereoselective extraction of IBP enantiomers from serum at basic pH has been discovered. Validation of the method was carried out. Calibration curves of ibuprofen enantiomers were linear in the range of 0.1-25.0 μg/ml in serum and of 0.5-250.0 μg/ml in urine. Recovery of both enantiomers from serum and urine amounted 74-86 and 90-98%, respectively. Intra- and inter-day measurement precision and accuracy were below 15%. Limits of detection for IBP enantiomers amounted 0.05 and 0.25 μg/ml in samples of serum and urine, respectively. Limit of quantitation was also estimated. IBP enantiomers proved to be stable following three freeze and thaw cycles and during storage in autosampler at ambient temperature. The validated methods enable pharmacokinetic studies of enantiomers in both media. The elaborated HPCE method can be alternative to HPLC.  相似文献   

3.
A simple and rapid HPLC method has been developed using a polysaccharide chiral stationary phase (Chiralpak AD-H) for the resolution of glycidyl tosylate enantiomers. These compounds were obtained by asymmetric epoxidation of allyl alcohol with chiral titanium-tartrate complexes as catalyst after in situ derivatization of the intermediate glycidols. Separations were achieved using two types of mobile phase: a normal-phase (n-hexane), and a polar-phase (methanol or acetonitrile). The influence of the type and concentration of organic modifier in the mobile phase (ethanol or 2-propanol), the flow rate and the column temperature was investigated. In normal-phase mode, the optimized conditions were: n-hexane/ethanol 70/30 (v/v) at a flow rate of 1.2 mL min−1 and 40 °C. In polar-phase mode, the optimized conditions were: methanol at a flow rate of 0.8 mL min−1 and 20 °C. In both cases, analysis time was ≤11 min and the chiral resolution was ≥2. Nevertheless, due to the better Rs obtained in normal-phase mode, only this method was validated to avoid peaks overlapping in real samples. This method was found to be linear in the 5-300 μg mL−1 range (R2 > 0.999) with an LOD of 1.5 μg mL−1 for both glycidyl tosylate enantiomers. Repeatability and intermediate precision at three different concentrations levels were below 0.5 and 7.2% R.S.D. for retention time and area, respectively. This method was applied successfully for the determination of glycidyl tosylate enantiomers after in situ derivatization of glycidols obtained in allylic alcohol asymmetric epoxidation processes with chiral titanium-tartrate complexes as catalysts.  相似文献   

4.
A new isocratic stability indicating HPLC method for determination of tizanidine in drug substance and formulated products is described. Chromatographic separation of tizanidine from the related substances and degraded products was achieved with a Hypersil CN column ( mm, 5 μm) using a mobile phase comprising a mixture of an ion-pairing solution of heptanesulphonic acid sodium salt (HAS), methanol and acetonitrile (50:57:18 (v/v)) within 10 min. The flow-rate was 1.0 ml/min and detection was made at 227 nm. The method has good selectivity towards tizanidine, related substances and degraded products. Limits of quantitation for tizanidine and its synthetic intermediates were determined, ranging from 0.051 to 0.54 μg/ml. The linearity range was found to be 2-20 μg/ml (r=0.9998, n=5). Mean recovery for tizanidine from the tablets was from 99.5 to 99.8%. Precision of the method was 1.0% (n=9). The method can be used for routine analysis and the quality control of tizanidine drug substance and its formulated products.  相似文献   

5.
The enantioseparation of trans-3-ethoxycarbonyl-4-(4′-fluorophenyl)-1-methyl piperidine-2,6-dione (3), which is one of the important racemic precursors of trans-(−)-paroxetine, has been investigated using supercritical fluid chromatography on a Daicel Chiralpak AD column. Supercritical CO2 modified with methanol, ethanol and 2-propanol were used as mobile phase. The influence of type and concentration of alcohol modifier on retention factor, enantioselectivity and resolution were studied. Among methanol, ethanol and 2-propanol, 2-propanol was proved to be the most favorable modifier, and 9.5% (v/v) of 2-propanol was the preferred concentration at which racemate 3 could be separated with resolution of 15.86 and retention factor of 6.323. The effects of pressure and temperature were investigated at 9.5% (v/v) of 2-propanol in the pressure range of 12–24 MPa and temperature range of 303.15–318.15 K. It was found that the lower pressure and temperature were favorable to the enantioseparation. Using van’t Hoff plot, the isoenantioselective temperature was calculated to be 410 K. The enantioseparation process was “enthalpically driven” under experimental conditions. Finally, the retention factors were satisfactorily correlated by a simplified lattice–fluid model with average absolute relative deviation (AARD%) of both enantiomers smaller than 1.76%.  相似文献   

6.
Four different organic solvents: dimethylformamide, 1,4-dioxane, n-propanol and ethanol were evaluated as alternative organic modifiers to acetonitrile for liquid chromatography (LC) separations. The aim was to establish common sets of chromatographic conditions that could be applied for LC hyphenation to inductively coupled plasma mass spectrometry (ICPMS) as well as to electrospray ionization MS (ESIMS). The approach was to evaluate candidate solvents that, compared to acetonitrile, potentially could give improved analytical performance (low solvent vapor loading, maximized analyte sensitivity and minimized carbon depositions on instrumental parts) in ICPMS analysis while retaining chromatographic and ESIMS performances. The study showed that dimethylformamide, 1,4-dioxane, n-propanol and ethanol all can be advantageous chromatographic modifiers for LC–ICPMS analysis, giving superior performance compared to acetonitrile. For the combined use of LC–ICPMS and LC–ESIMS with a common set of chromatographic conditions, n-propanol gave the best overall performance. The 195Pt+ signal in ICPMS was continuously monitored during a 0–60% organic solvent gradient and at 25% of organic modifier, 100% of the signal obtained at the gradient start was preserved for n-propanol compared to only 35% of the signal when using acetonitrile. Platinum detection limits were 5–8 times lower using n-propanol compared with acetonitrile. Signal-to-noise ratio in continuous ESIMS signal measurements was 100, 90 and 110 for a 100 μg/ml solution of leucine–enkephaline using acetonitrile, ethanol and n-propanol, respectively. Chromatographic efficiency in reversed phase separations was preserved for n-propanol compared to acetonitrile for the analysis of the whole protein cytochrome C and the peptide bacitracin on a column with particle and pore sizes of 5 μm and 300 Å, but slightly deteriorated for the separation of the peptides leucine–enkephaline and bacitracin on a 3 μm and 90 Å column as the peak width at half height for both peptides increased by a factor of two. The performance on the smaller dimensioned column could however be improved by running the separations at 40 °C.  相似文献   

7.
A chiral separation method for glycidol enantiomers determination by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry was developed. Two chiral stationary phases, amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) and (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl) ethylamine (SUMICHIRAL OA-4900) have been investigated. The effects of the mobile phase composition, elution program and column temperature were also studied. Under the best conditions: Chiralpak AD-H column, mobile phase composition n-hexane:ethanol (70:30, v/v), flow rate of 0.8 mL/min and 40 °C column temperature, a good resolution (Rs = 1.6) for both enantiomers has been achieved with an analysis time of 16 min. The method was found to be linear in the range from 100 to 500 ppm for both glycidol enantiomers with a good determination coefficient (r2 higher than 0.99) and good precision. Limits of detection of 31 and 50 ppm for (R)-(+)-glycidol and (S)-(−)-glycidol, respectively, were obtained. The method was applied to the determination of the enantiomeric excess and yield obtained in a asymmetric epoxidation process of allyl alcohol with a chiral titanium-tartrate complex as catalyst.  相似文献   

8.
In the present work, the separations of calixarene derivatives have been investigated using both high-performance liquid chromatography (HPLC) and nonaqueous capillary electrophoresis (NACE) techniques. HPLC-1 method with LC-318 (pore size = 300 Å) column and MeCN mobile phase was optimized for the separation of calixarenes. At the flow-rate of 1 ml/min p-nitrocalix[6]arene, calix[4]arene and calix[6]arene could be well baseline and symmetrically separated within 5 min. For the separation of p-tert-butylcalix[n]arenes (n = 4, 6, 8), HPLC-2 and NACE methods have been optimized. The optimal conditions in HPLC-2 method included NH2 column and MeCN mobile phase, and p-tert-butylcalix[n]arenes (n = 4, 6, 8) were baseline separated within 10 min at 0.8 min/min. The optimal conditions for NACE method employed MeCN-H2O (8:2, v/v) as the nonaqueous medium and 120 mM Tris/HCl (pH 9.0) as the buffer, and p-tert-butylcalix[n]arenes (n = 4, 6, 8) were successfully baseline resolved within 16 min. With the detection at 280 nm, the calibration lines were linear in the ranges of 1-200 μg/ml for calixarene derivatives by HPLC-1 and HPLC-2 methods, and of 2.5-200 μg/ml for p-tert-butylcalix[n]arenes (n = 4, 6, 8) by NACE method, respectively. The detection limits (S/N = 3) and recoveries ranged from 0.5 to 1.4 μg/ml and from 98.1 to 102.4% by both HPLC-1 and HPLC-2 methods, and from 1.3 to 2.0 μg/ml and from 97.9 to 105.1% by NACE method, respectively. The intra-day reproducibility of the methods was determined with satisfactory results. The proposed HPLC and NACE methods were accurate and reproducible, and could be utilized to separate and determine calixarene derivatives.  相似文献   

9.
In the present study, a capillary electrophoresis method using high concentration of amylose solutions as separation medium has been developed with the aid of dimethyl sulfoxide (DMSO) as co-solvent. The best buffer conditions for primaquine, trihexyphenidyl (THP), sulconazole and cetirizine enantiomers were optimized as 20 mM sodium phosphate buffer with DMSO/water (40/60, v/v) as solvent at a pH of 3.0, containing 10% (w/v) amylose. Partial-filling and semi-permanent coating techniques were used considering the influences of DMSO on UV detection. High chiral resolution for THP enantiomers was obtained showing good chiral separation capacity of this method. The method showed good linearity (R2 > 0.998) over the concentration range of 0.50 and 2.00 mg L−1 for all the enantiomers. The detection limits for the tested enantiomers were in the range from 0.05 to 0.12 mg L−1. The linear calibration models were proven to be adequate for the experimental data by lack-of-fit test. The intra-assay precision, inter-day precision and accuracy were all evaluated to be acceptable. Separation and determination of THP enantiomers in rabbit blood were also carried out.  相似文献   

10.
A bioanalytical method was developed for the simultaneous determination of paracetamol and ketorolac enantiomers in human plasma using two-dimensional liquid chromatography–mass spectrometry. Separation was first achieved in a reversed-phase C18 column by using a gradient solvent system consisting of 0.1% aqueous formic acid and acetonitrile (ACN). The effluent between 8.9 and 9.9 min, corresponding to phenacetin and racemic ketorolac peaks, was transferred to a polysaccharide-based chiral column (ChiralPak AD-RH) by using a six-port switching valve. Ketorolac enantiomers were subsequently separated on the chiral column using an isocratic mobile phase composed of ACN/0.1% formic acid 50:50 (v/v). The total run-time was less than 18 min. This innovative strategy prolongs the lifetime of chiral columns by avoiding damages due to the sample matrix. The detection was carried out with an ion trap mass spectrometer equipped with an electrospray ionisation source. The tested ranges were 0.05–20 μg/ml for paracetamol and 0.005–2 μg/ml for each ketorolac enantiomer. This method was fully validated and showed good performances in terms of trueness (80–110%) and precision (6.7–13.2%). The mean extraction recoveries were 60%, 72% and 76% for paracetamol, R-ketorolac and S-ketorolac, respectively. Finally, this procedure was successfully applied to a pharmacokinetic study.  相似文献   

11.
The method for simultaneous separation and determination of trace monoadenosine and diadenosine monophosphate (i.e. 2′-AMP, 3′-AMP, 5′-AMP and 3′-5′ ApA) in biomimicking prebiotic synthesis was developed using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection and electrospray ionization mass spectrometry (ESI-MS) identification. The separation was performed on a Supelco C18 column with a gradient elution (solvent A: 10 mM NH4Ac aqueous solution; solvent B: MeOH). The flow rate was set at 1.0 ml/min. The quantitative determination was achieved by HPLC with UV detection at 260 nm. The linearity ranged from 0.5 to 100 μg/ml for each nucleotide. The limits of detection (LODs) for the four nucleotides were less than 0.30 μg/ml. The recovery ranged from 95.2 to 100.7%. The intra-day relative standard deviations (RSDs) of the retention times were between 0.7 and 1.1%. Both full-scan ESI-MS and -MS2 for the four nucleotides under both positive and negative polarity were carried out and the possible cleavage pathways of them were depicted. The specific ions, [AMP + H]+ at m/z 348 and [ApA + H]+ at m/z 597, were chosen to characterize the four nucleotides in biomimicking prebiotic synthesis between N-(O,O-diisopropyl) phosphoryl amino acid (Dipp-aa) and adenosine. Using the proposed HPLC/UV/ESI-MS method, the concentration of 2′-AMP, 3′-AMP, 5′-AMP and 3′-5′ ApA in the biomimicking prebiotic synthesis samples were determined.  相似文献   

12.
Li G  Ji Z  Wu K 《Analytica chimica acta》2006,565(2):178-182
In the study, we developed a simple, rapid and sensitive method for the determination of tiopronin (TP) in human plasma, which was based on derivatization with p-bromophenacyl bromide (p-BPB) followed by liquid-liquid extraction and reverse-phase HPLC-UV detection. For the first time, the p-BPB was introduced into the derivatization of TP. The thiol group of TP was trapped with p-BPB to form a TP-p-BPB adduct, which can be very suitable for UV detection. From acidified plasma samples, the derivatized TP was extracted with 5 mL dichloromethane. Effective chromatographic separation was achieved using a C18 column (DIAMONSIL 150 mm × 4 mm i.d., 5 μm) based on an acetonitrile-water-trifluoroacetic acid (40:59.88:0.12, v/v/v) elution at a flow-rate of 1 mL/min. The IS and the derivatized TP were detected at 263 nm. No endogenous substances were found to interfere. The limit of quantification for derivatized TP (TP-p-BPB) in plasma was 40 ng/mL. The calibration curve for the derivatized TP showed linearity in the range 0.04-4 μg/mL with a regression coefficient corresponding to 0.9991 and the coefficient of the variation of the points of the calibration curve being lower than 10%. Extraction recoveries of the derivatized TP in plasma were greater than 72%. The method was suitably validated and successfully applied to determination of TP in human plasma samples.  相似文献   

13.
Kishida K  Furusawa N 《Talanta》2005,67(1):54-58
A simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N4-acetyl metabolites in chicken plasma, muscle, liver, and eggs using gradient high-performance liquid chromatography (HPLC) with a photo-diode array detector is developed. All the compounds are extracted by a handheld ultrasonic homogenizer with ethanol followed by centrifugation. The separation is performed by a reversed-phase C4 column with a gradient elution (ethanol:1% (v/v) acetic acid, v/v; 10:90 → 20:80). Average recoveries from samples spiked at 0.1-1.0 μg g−1 or μg ml−1 for each drug were >90% with relative standard deviations within 4%. The limits of quantitation were <30 ng g−1 or ng ml−1.  相似文献   

14.
Two rapid, accurate and sensitive methods are developed and validated for the quantitative simultaneous determination of cefotaxime (CFX) and its active metabolite desacetylcefotaxime (DCFX) in urine.Based on the previous results which showed the four electron reduction of CFX at ≈ −0.5 V, and the new findings that DCFX reduction occurred at more positive potential (−0.23 V), the new adsorptive stripping differential pulse voltammetric (AdSDPV) method was developed for determination of CFX in the presence of DCFX. Linear responses were observed over a wide concentration range (0.07-0.52 μg/ml for CFX and 0.22-1.3 μg/ml for DCFX) in urine.The second assay involves subsequent separation on a reversed-phase HPLC column, with ultraviolet detection at 262 nm. Retention times were 4.057 and 1.960 min for CFX and DCFX, respectively. Linear responses were observed over a wide range, 0.55-6.60 μg/ml for CFX and 1.10-11.00 μg/ml for DCFX, in urine.The statistical evaluation for both methods was examined by means of within-day repeatability (n = 5) and day-to-day precision (n = 3) and was found to be satisfactory with high accuracy and precision.  相似文献   

15.
A pyrimethanil-imprinted polymer (P1) was prepared by iniferter-mediated photografting a mixture of methacrylic acid and ethylene dimethacrylate onto homemade near-monodispersed chloromethylated polydivinylbenzene beads. The chromatographic behaviour of a column packed with these imprinted beads was compared with another column packed with irregular particles obtained by grinding a bulk pyrimethanil-imprinted polymer (P2). The comparison was made using the kinetic model of non-linear chromatography, studying the elution of the template and of two related substances, cyprodinil and mepanipyrim. Extension of the region of linearity, capacity factors for the template and the related substances, column selectivity, binding site heterogeneity, apparent affinity constant (K) and lumped kinetic association (ka) and dissociation rate constant (kd) were studied during a large interval of solute concentration, ranging between 1 and 2000 μg/ml. From the experimental results obtained, in the linearity region of solute concentration column selectivity and binding site heterogeneity remained essentially the same for the two columns, while column capacity (at 20 μg/ml, P1 = 23.1, P2 = 11.5), K (at 20 μg/ml, P1 = 8.3 × 106 M−1, P2 = 2.5 × 106 M−1) and ka (at 20 μg/ml, P1 = 3.5 μM−1 s−1, P2 = 0.47 μM−1 s−1) significantly increased and kd (at 20 μg/ml, P1 = 0.42 s−1, P2 = 0.67 s−1) decreased for the column packed with the imprinted beads. These results are consistent with an influence of the polymerisation method on the morphology of the resulting polymer and not on the molecular recognition properties due to the molecular imprinting process.  相似文献   

16.
Khuhawar MY  Arain GM 《Talanta》2005,66(1):34-39
Spectrophotometric and high performance liquid chromatographic (HPLC) methods have been developed for the determination of cis-platin and carboplatin based on the pre-column derivatization of platinum(II) with 2-acetylpyridine-4-phenyl-3-thiosemicarbazone. The complex was extracted in chloroform with molar absorptivity of 2.2 × 104 L mol−1 cm−1 at 380 nm. The complex eluted from a Phenomenex C-18 (150 mm × 4.6 mm i.d.) column with methanol:water:acetonitrile:tetrabutyl ammonium bromide (1 mM) (44:30:25:1, v/v/v/v) with a flow rate of 1 ml/min and UV detection at 260 nm. Ruthenium(IV) and selenium(IV) also separated completely. The linear calibration curve was with 0.5-12.5 μg/ml and detection limit of 10 ng/ml platinum(II).The analysis of cis-platin and carboplatin injections by spectrophotometric and HPLC methods indicated relative standard deviation (R.S.D.) of 0.66-2.1%. The method was used for the determinations of cis-platin in serum and urine of cancer patients after chemotherapy and platinum contents were found 148-444 and 50-90 ng/ml with R.S.D. of 0.3-3.0 and 0.6-2.4% for the serum and urine, respectively. The recovery of platinum(II) from serum was 97% with R.S.D. 2.2%.  相似文献   

17.
The present work describes for the first time the use of SPME coupled to LC–MS/MS employing the polar organic mode in a stereoselective fungal biotransformation study to investigate the fungi ability to biotransform the drug risperidone into its chiral and active metabolite 9-hydroxyrisperidone (9-RispOH). The chromatographic separation was performed on a Chiralcel OJ-H column using methanol:ethanol (50:50, v/v) plus 0.2% triethylamine as the mobile phase at a flow rate of 0.8 mL min−1. The SPME process was performed using a C18 fiber, 30 min of extraction time and 5 min of desorption time in the mobile phase. The method was completely validated and all parameters were in agreement with the literature recommendations. The Cunninghamella echinulata fungus was able to biotransform risperidone into the active metabolite, (+)-9-RispOH, resulting in 100% of enantiomeric excess. The Cunninghamella elegans fungus was also able to stereoselectively biotransform risperidone into (+)- and (−)-9-RispOH enantiomers at different rates.  相似文献   

18.
The chiral separation of 10 β-adrenergic blockers (acebutalol, alprenolol, bufuralol, bisoprolol, celiprolol, carazolol, indenolol, metoprolol, oxprenolol and propranolol) was achieved on CelluCoat column (250 mm × 4.6 mm, 5 μm particle size). The mobile phases used were (90:10:0.2, v/v/v) and (95:5:0.2, v/v/v) combinations of n-heptane-ethanol-diethylamine, respectively. The flow rates were 0.5, 1.0 and 2.0 mL min−1 with detection at 225 nm. The capacity (k), selectivity (α) and resolution (Rs) factors were 0.44-12.91, 1.12-2.19 and 1.00-9.50, respectively. The proposed supra-molecular models indicated that the chiral resolution were governed by π-π interactions, hydrogen bondings and steric effect.  相似文献   

19.
Jing-Shan Chiang 《Talanta》2007,71(2):882-886
Dynamic hollow fiber liquid-phase microextraction (HF-LPME) coupled with gas chromatography with flame ionization detection (GC-FID) and GC-electron capture detecion (GC-ECD) was used for quantification of toxic haloethers in lake water. The analytes were extracted from 5 ml of aqueous sample using 4 μl of organic solvent through a porous polypropylene hollow fiber. The effects on extraction performance of solvent selection, agitation rate, extraction time, extraction temperature, concentration of salt added and volumes of solvent for extraction and injection were optimized. The proposed method provided a good average enrichment factor of up to 231-fold, reasonable reproducibility ranging from 9 to 12% (n = 3), and good linearity (R2 ≧ 0.9973) for spiked water samples. Method detection limits (MDLs) ranged from 0.55 to 4.30 μg/l for FID and 0.11-0.34 μg/l for ECD (n = 7).  相似文献   

20.
Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid–liquid microextraction coupled GC–MS system. Microextraction efficiency factors have been investigated and optimized: 9 μL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 °C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 μL of acetic anhydride and 0.5% (w/v) K2CO3. Under the selected conditions, pre-concentration factor of 235–1174, limit of detection of 0.005–0.68 μg/L (S/N = 3) and linearity range of 0.02–300 μg/L have been obtained. A reasonable repeatability (RSD ≤ 10.4%, n = 5) with satisfactory linearity (0.9995 ≥ r2 ≥ 0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号