首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An optical sensor for mercury ion (Hg2+), based on quenching the fluorescence of the sensing reagent porphyrin immobilized in plasticized poly(vinyl chloride) (PVC) membrane, has been developed. The responses to mercury ion were compared for the sensors modified with three porphyrin compounds including 5,10,15,20-tetraphenylporphyrin (TPP), tetra(p-dimethylaminophenyl)porphyrin (TDMAPP) and tetra(N-phenylpyrazole) porphyrin (TPPP). Among them, TDMAPP showed the most remarkable response to Hg2+. The drastic decrease of the TDMAPP fluorescence intensity was attributed to the formation of a complex between TDMAPP and Hg2+, which has been utilized as the fabrication basis of a Hg2+-sensitive fluorescence sensor. The analytical performance characteristics of the TDMAPP modified sensor was investigated. The response mechanism, especially involving the response difference of three porphyrin compounds, was discussed in detail. The sensor can be applied to the quantification of Hg2+ with a linear range covering from 4.0 × 10−8 mol L−1 to 4.0 × 10−6 mol L−1. The limit of detection was 8.0 × 10−9 mol L−1. The sensor exhibited excellent reproducibility, reversibility and selectivity. Also, the TDMAPP-based sensor was successfully used for the determination of Hg2+ in environmental water samples.  相似文献   

2.
A bifurcated optical fiber chemical sensor for continuous monitoring of bisphenol A (BPA) has been proposed based on the fluorescence quenching (λex/λem = 286/390 nm) of pyrene/dimethyl β-cyclodextrin (HDM-β-CD) supramolecular complex immobilized in a plasticized poly(vinyl chloride) (PVC) membrane, in which pyrene served as a sensitive fluorescence indicator probe. The decrease of the fluorescence intensity of pyrene/HDM-β-CD complex upon the addition of BPA was attributed to the displacement of pyrene by BPA, which has been utilized as the basis of the fabrication of a BPA-sensitive fluorescence sensor. The response mechanism of the sensor was discussed in detail. The sensor exhibited a dynamic detection range from 7.90 × 10−8 to 1.66 × 10−5 mol L−1 with a detection limit of 7.00 × 10−8 mol L−1, and showed excellent reproducibility, reversibility, selectivity, and lifetime. The proposed sensor was successfully used for the determination of BPA in water samples and landfill leachate.  相似文献   

3.
A new sensor for simultaneous determination of peroxyacetic acid and hydrogen peroxide using silver nanoparticles (Ag-NPs) as a chromogenic reagent is introduced. The silver nanoparticles have the catalytic ability for the decomposition of peroxyacetic acid and hydrogen peroxide; then the decomposition of them induces the degradation of silver nanoparticles. Hence, a remarkable change in the localized surface plasmon resonance absorbance strength could be observed. Spectra-kinetic approach and artificial neural network was applied for the simultaneous determination of peroxyacetic acid and hydrogen peroxide. Linear calibration graphs were obtained in the concentration range of (8.20 × 10−5 to 2.00 × 10−3 mol L−1) for peroxyacetic acid and (2.00 × 10−5 to 4.80 × 10−3 mol L−1) for hydrogen peroxide. The analytical performance of this sensor has been evaluated for the detection of simultaneous determination of peroxyacetic acid and hydrogen peroxide in real samples.  相似文献   

4.
The carbazole derivative, 9-ethyl-3-carbazylidene carbazole hydrazone (ECCH) with two conjugated carbazole rings have been applied as a fluorescence carrier for preparation of an iodine sensitive optical chemical sensor. The response of the sensor is based on quenching of the fluorescence of ECCH by iodine. The conjugated carbazole dimer based sensor shows a linear response toward iodine in the concentration range 1.0 × 10−6 to 1.0 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 at pH of 7.0. The effect of composition of the sensor membrane was studied, and the experimental conditions were optimized. Most commonly coexisting ions do not interfer with the iodine assay. The sensor shows sufficient repeatability, selectivity, operational lifetime of two months and a fast response of less then 50 s. The sensor has been used for determination of iodine in water samples.  相似文献   

5.
A novel optical sensor based on a redox reaction for the determination of iodide has been developed. The optode membrane is constructed by immobilization of methyltrioctylammonium chloride on triacetylcellulose polymer. The exchange of chloride as counter ion with iodate in the membrane changes the color to yellow, when it is placed in acidic solution of iodide. The sensor can readily be regenerated by 0.1 mol L−1 NaOH in less than 15 s. The optode has a linear range of 3.94 × 10−6 to 5.51 × 10−5 mol L−1 of iodide ions with a limit of detection 7.44 × 10−7 mol L−1. The relative standard deviation for eight replicate measurements of 3.94 × 10−6 and 1.57 × 10−5 mol L−1 of iodide was 2.83 and 1.38%, respectively. The sensor was successfully applied to the determination of iodide in tablet, powdered milk and urine samples.  相似文献   

6.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

7.
A novel method of first derivative synchronous fluorescence was developed for the rapid simultaneous analysis of trace 1-hydroxypyrene (1-OHP), 1-naphthol (1-NAP), 2-naphthol (2-NAP), 9-hydroxyphenanthrene (9-OHPe) and 2-hydroxyfluorene (2-OHFlu) in human urine. Only one single scan was needed for quantitative determination of five compounds simultaneously when Δλ = 10 nm was chosen. In the optimal experimental conditions, there was a linear relationship between the fluorescence intensity and the concentration of 1-OHP, 1-NAP, 2-NAP, 9-OHPe and 2-OHFlu in the range of 1.75 × 10−9 to 4.50 × 10−6 mol L−1, 3.64 × 10−8 to 2.20 × 10−4 mol L−1, 8.18 × 10−9 to 1.20 × 10−4 mol L−1, 3.26 × 10−9 to 8.50 × 10−5 mol L−1 and 4.88 × 10−9 to 5.50 × 10−6 mol L−1, respectively. The limits of detection (LOD) were found to be 5.25 × 10−10 mol L−1 for 1-OHP, 1.10 × 10−8 mol L−1 for 1-NAP, 2.46 × 10−9 mol L−1 for 2-NAP, 9.77 × 10−10 mol L−1 for 9-OHPe and 1.46 × 10−9 mol L−1 for 2-OHFlu. The proposed method is reliable, selective and sensitive, and has been used successfully in the determination of traces of 1-OHP, 1-NAP, 2-NAP, 9-OHPe and 2-OHFlu in human urine samples, whose results were in good agreement with those gained by the HPLC method.  相似文献   

8.
A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn2+ ions over a wide concentration range (4.0 × 10−7 to 1.8 × 10−2 mol L−1) with a slope of 30.1 (±1.0). The limit of detection is 1.0 × 10−7 mol L−1. The electrode has a fast response time (∼10 s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution.  相似文献   

9.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

10.
A novel potentiometric zirconium - PVC matrix membrane sensor incorporating bis(diphenylphosphino) ferrocene as an electroactive material and tris(2-ethylhexyl)phosphate as solvent mediator is described. In mixed acetate buffer solution of pH 4.8, the sensor displays a rapid and linear response for zirconium ion over the concentration range 1.0 × 10−1 to 1.0 × 10−7 mol L−1 with a good slope of 59.7 ± 0.3 mV per decade and detection limit 1.8 × 10−8 mol L−1. The best performance was obtained with membrane composition 33% PVC, 65% TEHP, 1% NaTPB and 1% ionophore. The proposed electrode revealed excellent selectivity for zirconium ion over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.15-7.8. The electrode was applied for at least 1 month without any considerable divergence in the potential responses. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of zirconium ions with sodium fluoride and in determination of zirconium ion in some alloy, tape and waste water samples.  相似文献   

11.
An original electrochemical sensor based on molecularly imprinted conducting polymer (MICP) is developed, which enables the recognition of a small pesticide target molecule, atrazine. The conjugated MICP, poly(3,4-ethylenedioxythiophene-co-thiophene-acetic acid), has been electrochemically synthesized onto a platinum electrode following two steps: (i) polymerization of comonomers in the presence of atrazine, already associated to the acetic acid substituent through hydrogen bonding, and (ii) removal of atrazine from the resulting polymer, which leaves the acetic acid substituents open for association with atrazine. The obtained sensing MICP is highly specific towards newly added atrazine and the recognition can be quantitatively analyzed by the variation of the cyclic voltammogram of MICP. The developed sensor shows remarkable properties: selectivity towards triazinic family, large range of detection (10−9 mol L−1 to 1.5 × 10−2 mol L−1 in atrazine) and low detection threshold (10−7 mol L−1).  相似文献   

12.
Chen J  Zheng A  Chen A  Gao Y  He C  Kai X  Wu G  Chen Y 《Analytica chimica acta》2007,599(1):134-142
A gold-nanoparticles (Au NPs)-Rhodamine 6G (Rh6G) based fluorescent sensor for detecting Hg (II) in aqueous solution has been developed. Water-soluble and monodisperse gold nanoparticles (Au NPs) has been prepared facilely and further modified with thioglycolic acid (TGA). Free Rh6G dye was strongly fluorescent in bulk solution. The sensor system composing of Rh6G and Au NPs fluoresce weakly as result of fluorescence resonance energy transfer (FRET) and collision. The fluorescence of Rh6G and Au NPs based sensor was gradually recovered due to Rh6G units departed from the surface of functionalized Au NPs in the presence of Hg(II). Based on the modulation of fluorescence quenching efficiency of Rh6G-Au NPs by Hg(II) at pH 9.0 of teraborate buffer solution, a simple, rapid, reliable and specific turn-on fluorescent assay for Hg(II) was proposed. Under the optimum conditions, the fluorescence intensity of sensor is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 5.0 × 10−10 to 3.55 × 10−8 mol L−1, and the corresponding limit of detection (LOD) is low as 6.0 × 10−11 mol L−1. The relative standard deviation of 10 replicate measurements is 1.5% for 2.0 × 10−9 mol L−1 Hg(II). In comparison with conventional fluorimetric methods for detection of mercury ion, the present nanosensor endowed with higher sensitivity and selectivity for Hg(II) in aqueous solution. Mercury(II) of real environmental water samples was determined by our proposed method with satisfactory results that were obtained by atomic absorption spectroscopy (AAS).  相似文献   

13.
Zhen Hai Li  Koji Oshita 《Talanta》2010,82(4):1225-637
Flow-injection analysis system (FIA system), which was based on Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide, was developed for the determination of hydrogen peroxide. The chromotropic acid has a fluorescence measured at λem = 440 nm (emission wavelength) with λex = 235 nm (excitation wavelength), and the fluorescence intensity at λem = 440 nm quietly decreased in the presence of hydrogen peroxide and Fe(II), which was caused by Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide. By measuring the difference of fluorescence intensity, hydrogen peroxide (1.0 × 10−8-1.0 × 10−3 mol L−1) could be determined by the proposed FIA system, whose analytical throughput was 40 samples h−1. The relative standard deviation (RSD) was 1.03% (n = 10) for 4.0 × 10−8 mol L−1 hydrogen peroxide. The proposed FIA technique could be applied to the determination of hydrogen peroxide in rain water samples.  相似文献   

14.
An optical sensor for berberine, the basic ingredient of the widely used traditional Chinese medicine Coptis Chinensis, based on its intrinsic fluorescence enhanced by butylated-β-cyclodextrin (HDB-β-CD) immobilized in plasticized poly(vinyl chloride) (PVC) membrane has been developed. The drastic enhancement of fluorescence intensity of berberine was attributed to the formation of an inclusion complex between HDB-β-CD and berberine, which has been utilized as the basis of the fabrication of a berberine-sensitive fluorescence sensor. The proposed sensor was quite distinct from those fluorescent sensors for berberine reported so far which relied upon quenching the fluorescence of the sensing reagent immobilized on membrane by berberine. The response mechanism of optode membrane was discussed in detail from the view of molecular dynamics and the optimum steric configuration of the inclusion complex was presented by molecular dynamics simulation. The analytical performance characteristics of the proposed berberine-sensitive sensor were investigated. The sensor can be applied to the quantification of berberine with a linear range covering from 4.0×10−7 to 2.0×10−5 mol l−1 with a detection limit of 8.0×10−8 mol l−1. The sensor exhibits excellent reproducibility, reversibility and selectivity. The recommended method was successfully used for the determination of berberine in pharmaceutical preparations.  相似文献   

15.
Based on the characteristics of synchronous fluorescence spectroscopy (SFS), a new method with high sensitivity and selectivity was developed for rapid determination of silver ion with functional cadmium sulphide (CdS) nanoparticles as a fluorescence probe. When Δλ (λem − λex) = 215 nm, maximum synchronous fluorescence is produced at 304 nm. Under optimal conditions, functional cadmium sulphide displayed a calibration response for silver ion over a wide concentration range from 0.8 × 10−10 to 1.5 × 10−8 mol L−1. The limit of detection was 0.4 × 10−10 mol L−1 and the relative standard deviation of seven replicate measurements for the lowest concentration (0.8 × 10−10 mol L−1) was 2.8%. Compared with several fluorescence methods, the proposed method had a wider linear range and improved the sensitivity. Furthermore, the concentration dependence of the synchronous fluorescence intensity is effectively described by a Langmuir-type binding isotherm.  相似文献   

16.
A new heterodinuclear Fe(III)Zn(II) complex which mimics the active site of the hydrolytic enzyme red kidney bean purple acid phosphatase was synthesized and characterized by IR, CHN and X-ray crystallographic analyses. This complex, [FeIIIZnII(μ-OH)bpbpmp-CH3](ClO4)2, containing the ligand (H2bpbpmp-CH3 = {2-[bis(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxy-5-methylbenzyl) (2-pyridyl-methyl) aminomethyl]-4-methyl-phenol}) was employed in the construction of a biomimetic sensor and used in the determination of rosmarinic acid in plant extract samples. The response parameters and optimization of the biomimetic sensor design were evaluated. The best performance of this sensor was obtained for 75:15:10% (w/w/w) of the graphite powder:nujol:Fe(III)Zn(II) complex, 0.1 mol L−1 phosphate buffer solution (pH 7.5), 1.19 × 10−4 mol L−1 hydrogen peroxide with frequency, pulse amplitude, and scan increment at 30 Hz, 100 mV, and 0.6 mV, respectively. The rosmarinic acid concentration was linear in the range of 2.98 × 10−5 to 3.83 × 10−4 mol L−1 (r = 0.9991) with a detection limit of 2.30 × 10−6 mol L−1. This biomimetic sensor demonstrated long-term stability (300 days; 900 determinations) and reproducibility, with a relative standard deviation of 12.0%. The recovery study of rosmarinic acid in plant extract samples gave values from 90.3 to 98.3% and the concentrations determined showed agreement when compared with those obtained using capillary electrophoresis at the 95% confidence level.  相似文献   

17.
A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0 × 10−6 to 1.0 × 10−4 mol L−1 with a detection limit of 8.0 × 10−8 mol L−1 (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.  相似文献   

18.
A ratiometric fluorescence sensor for Be2+ has been fabricated via alternate assembly of 2-(3,6-disulfo-8-hydroxynaphthylazo)-1,8-dihydroxynaphthalene-3,6-disulfonate (Beryllon II) and MgAl-LDH nanosheets on quartz substrates using the layer-by-layer (LBL) deposition technique. UV–vis absorption and the fluorescence emission spectroscopy indicate a stepwise and regular growth of the Beryllon II/LDH UTFs upon increasing deposition cycle. The film of Beryllon II/LDH possesses a periodic layered structure perpendicular to the substrate revealed by X-ray diffraction and scanning electron microscopy. Atomic force microscopy images show that the film surface is continuous and uniform. The Beryllon II/LDH UTFs display ratiometric fluorescence response for Be2+ with a linear response range in 1.0 × 10−7–1.9 × 10−6 mol L−1 and a detection limit of 4.2 × 10−9 mol L−1. Furthermore, the ratiometric sensor exhibits good repeatability, high stability (thermal, storage and mechanical) as well as excellent selectivity toward Be2+. XPS and Raman measurements demonstrate that the specific response of the sensor is attributed to the coordination between Be2+ and Beryllon II in the UTF. The Beryllon II/LDH UTFs in this work can be potentially used as a chemosensor for the detection of Be2+ in the environmental and biomedical field.  相似文献   

19.
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe3+ ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe3+-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe3+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10−4 to 1.0 × 10−7 M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe3+ ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

20.
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 × 10−7 mol L−1 to 8.3 × 10−5 mol L−1 for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 × 10−7 mol L−1 and 3.5 × 10−8 mol L−1, respectively. The proposed method was successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号