首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Dyads of endohedral nitrogen fullerene and porphyrin have been synthesized. In the two-radical-center dyad, the copper(II) tetraphenylporphyrin suppressed the electron spin resonance (ESR) signal of N@C(60) through intramolecular dipolar coupling with a strength of 27.0 MHz. Demetalation of the metalloporphyrin moiety of the dyad, which effectively turned the two-radical-center dyad into a single-radical-center dyad, recovered 82% of the ESR signal of N@C(60). Such mechanism of switching a spin state on and off could find use in molecular spintronics applications.  相似文献   

2.
A long-lived charge-separated (CS) state, which can be observed even at 900 mus after laser excitation, has been attained in the formanilide-anthraquinone dyad (FA-AQ) in dimethyl sulfoxide, whereas the CS lifetime is shortened significantly to 20 ps in the ferrocene-formanilide-anthraquinone triad (Fc-FA-AQ). Such a drastic decrease in the CS lifetime by the addition of a ferrocene moiety to the FA-AQ dyad is ascribed to a decrease in the driving force of back electron transfer and an increase in the reorganization energy of electron transfer despite the longer charge-separation distance. The FA-AQ dyad and the Fc-FA-AQ triad have been employed as components of photovoltaic cells, where composite molecular nanoclusters of the FA-AQ dyad or the Fc-FA-AQ triad with fullerene (C60) are assembled onto a SnO2 electrode using an electrophoretic method. The composite films of the Fc-FA-AQ triad exhibit 10 times smaller values of an incident photon-to-photocurrent efficiency (IPCE) as compared with those of the FA-AQ dyad in accordance with a drastic decrease of the CS lifetime by addition of a ferrocene moiety to the FA-AQ dyad.  相似文献   

3.
While preparing the first structurally rigid zinc phthalocyanine-benzoquinone (ZnPc-BQ) dyad as a model for photoinduced charge separation mimicking natural photosynthesis, a convenient method is developed for in situ generation of a benzoquinone chromophore in the dyad using an iso-butyryl mask. The dyad has no rotamers and possesses a fixed distance between ZnPc and BQ moieties (center-to-center and edge-to-edge distances are 9.40 and 2.14 A, respectively). The dyad displays unusual electronic perturbation in the ground state, resulting from the interactions between Pc and BQ, and exhibits photoinduced electron transfer with a lifetime of 40 ps of the charged separated states. The steady-state fluorescence and electrochemical behavior of the dyad are evaluated. This study opens a route to subsequent dyads, triads, and complex architectures of electron donor-acceptor arrays with rigid structures and long charge separation states.  相似文献   

4.
Due to the unique features of the tetrathiafulvalene (TTF) unit, such as the electron-donating ability and presence of methylthio groups, dyad 1 can be assembled on the surfaces of gold nanoparticles, as indicated by absorption, electrochemical, and fluorescent-spectral studies. Dyad 1 can also be disassembled by the addition of thiols. Assembly of dyad 1 on the surfaces of gold nanoparticles leads to the formation of a triad (A1-D-A2), which in turn modulates the photoinduced electron-transfer process within dyad 1. Accordingly, the fluorescence intensity of dyad 1, after assembly with gold nanoparticles, increases, and the fluorescence lifetime is prolonged. Furthermore, the assembly of dyad 1 on gold nanoparticles facilitates photodimerization of the anthracene units of dyad 1. Both fluorescence and photodimerization are associated with the excited-state behavior of the anthracene unit, thus it may be concluded that the excited-state properties of the anthracene unit can be tuned upon complexation with gold nanoparticles.  相似文献   

5.
Square‐planar polypyridyl platinum(II) complexes possess a rich range of structural and spectroscopic properties that are ideal for designing artificial photosynthetic centers. Taking advantage of the directionality in the charge‐transfer excitation from the metal to the polypyridyl ligand, we describe here diplatinum(II)–ferrocene dyads, open‐butterfly‐like dyad 1 and closed‐butterfly‐like dyad 2 , which were designed to understand the conformation and orientation effects to prolong the lifetime of charge‐separated state. In contrast to the open‐butterfly‐like dyad 1 , the closed‐butterfly‐like dyad 2 shows three‐times long lifetime of charge separated state upon photoexcitation, demonstrating that the orientation in the rigid structure of dyad 2 is a very important issue to achieve long‐lived charge separated state.  相似文献   

6.
Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine-fullerene dyad 2 has been described. While nonfluorinated phthalocyanine-fullerene dyad 1 showed an efficient property of intramolecular photoinduced electron transfer, dyad 2, regardless of its covalently linked dyad system, appears not to show any electronic communication between fullerene and phthalocyanine. This observation is presumably due to the strong electron withdrawing nature of 12 trifluoroethoxy groups; fluorine leads phthalocyanine to become an acceptor whose electronic accepting property is equivalent to that of fullerene. This is a unique example that fluorine can terminate electronic communication in the covalently fullerene-phthalocyanine dyad system.  相似文献   

7.
利用2—[4—(N—乙基—N—6—羟己基)氨基苯偶氮基]—3—氰基—5—甲酰基噻吩(1)和N—甲基甘氨酸产生的亚胺叶立德与富勒烯反应,合成了含富勒烯的偶氮噻吩化合物(2),2再与1,3,5-苯三甲酰氯进行取代反应生成了一类以苯为核心、偶氮噻吩为连接桥、三个富勒烯(C50)为电子受体端基的星状化合物3。制备了单层太阳能电池器件(ITO/化合物3/Al),其单色光光电转换效率(IPCE)约为2.5%。  相似文献   

8.
A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag?-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.  相似文献   

9.
A coumarin derivative with a malonate unit has been synthesized and used for the preparation of a fullerene–coumarin dyad through the Bingel cyclopropanation method. The newly synthesized dyad is soluble in organic solvents and has been fully characterized with traditional spectroscopic techniques. Electronic interactions between the two components of the dyad were probed with the aid of UV/Vis spectroscopy, fluorescence emission, and electrochemistry measurements. Our studies clearly show the presence of electronic interactions between C60 and modified coumarin in the ground state; efficient electron‐transfer quenching of the singlet excited state of the coumarin moiety by the appended fullerene sphere was also observed. Time‐resolved fluorescence measurements revealed lifetimes for the coumarin–C60 dyad at a maximum of 50 ps, while the quantum yield was reaching unity. Additionally, the redox potentials of the C60–coumarin dyad were determined and the energetics of the electron‐transfer processes were evaluated. Finally, after alkaline treatment of C60–coumarin, which resulted in the deprotection of carboxylate units, the dyad was tested as a metal receptor for divalent metal cations; ion competition studies and fluorescence experiments showed binding selectivity for lead ions.  相似文献   

10.
A new dyad 1 with two spiropyran units as the photochromic acceptors and one fluorescein unit as the fluorescent donor was synthesized and characterized. External inputs (ultraviolet light, visible light, and proton) induce the reversible changes of the structure and, concomitantly, the absorption spectrum of dyad 1 due to the presence of two spiropyran units. Only the absorption spectrum of the ME form of the spiropyran units in dyad 1 has large spectral overlap with the fluorescence spectrum of the fluorescein unit. Thus, the fluorescence intensity of dyad 1 is modulated by reversible conversion among the three states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the ME form and the fluorescein unit. Based on the fact that dyad 1 could "read out" three external input signals (ultraviolet light, visible ligh,t and proton) and "write" a compatible specific output signal (fluorescence intensity), dyad 1 described here can be considered to perform an integrated circuit function with one OR and one AND interconnected logic gates. The present results demonstrate an efficient strategy for elaborating and transmitting information at the single molecular level.  相似文献   

11.
A new polymeric dyad of oligo‐anthracene‐block‐poly(3‐hexylthiophene) (Oligo‐ANT‐b‐P3HT) has been synthesized as a donor–donor dyad building block for organic photovoltaics. The polymer dyad and oligomer of anthracene‐9,10‐diyl (Oligo‐ANT) are prepared by Grignard Metathesis. The higher order of crystallinity and molecular chains ordering at solid phase reveal the intrinsic optical and electrical properties of polymeric dyad resulting in relatively higher light harvesting ability compared to the oligo(anthracene‐9,10‐diyl). The UV‐visible spectrum of (Oligo‐ANT‐b‐P3HT) in solution shows broad absorption with two sets of absorption from both anthracene and thiophene core units, covering a wide range of the visible spectrum. The test devices of the blends of polymeric dyad with fullerene C61 (PCBM) show improved photovoltaic performance with a power conversion efficiency of 3.26% upon subjecting to pre‐fabrication thermal treatments. With optimized morphology of the interpenetrating network and the shorter fluorescence lifetime of the annealed dyad/PCBM blends, the effective charge transfer from the donor dyad to PCBM has evidenced. Thus, these studies will allow further synthetic advances to make potential high crystalline polymeric dyads with significantly improved light harvesting capability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3032–3045  相似文献   

12.
A novel distyryl BODIPY–fullerene dyad is prepared. Upon excitation at the distyryl BODIPY moiety, the dyad undergoes photoinduced electron transfer to give a charge‐separated state with lifetimes of 476 ps and 730 ps in polar (benzonitrile) and nonpolar (toluene) solvents, respectively. Transient absorption measurements show the formation of the triplet excited state of distyryl BODIPY in the dyad, which is populated from charge‐recombination processes in both solvents.  相似文献   

13.
An electron donor–acceptor dyad based on a polychlorotriphenylmethyl (PTM) radical subunit linked to a tetrathiafulvalene (TTF) unit through a π‐conjugated N‐phenyl–pyrrole–vinylene bridge has been synthesized and characterized. The intramolecular electron transfer process and magnetic properties of the radical dyad have been evaluated by cyclic voltammetry, UV/Vis spectroscopy, vibrational spectroscopy, and ESR spectroscopy in solution and in the solid state. The self‐assembling abilities of the radical dyad and of its protonated non‐radical analogue have been investigated by X‐ray crystallographic analysis, which revealed that the radical dyad produced a supramolecular architecture with segregated donor and acceptor units in which the TTF subunits were arranged in 1D herringbone‐type stacks. Analysis of the X‐ray data at different temperatures suggests that the two inequivalent molecules that form the asymmetric unit of the crystal of the radical dyad evolve into an opposite degree of electronic delocalization as the temperature decreases.  相似文献   

14.
A high potential donor–acceptor dyad composed of zinc porphyrin bearing three meso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.  相似文献   

15.
The mechanism of formation and the stability of spontaneously formed vesicles upon self-assembly of a partially ground-state charge-separated, nonpolar-polar-nonpolar fullerene(C60)-didodecyloxybenzene (DDB) dyad in binary solvent mixtures requiring a critical dielectric constant of approximately 30 are reported. Molecular interactions giving rise to defined vesicles with in-plane bilayer packing are detailed from the predominant van der Waals and electrostatic interactions existing on the dyad's framework. The vesicles are formed with a large bending rigidity of 18kBT, which on further extraction into a polar water medium resulted in uniform spheres that corroborated well with the theoretical predictions. Furthermore, the water-extracted spherical dyad aggregates at an increased dyad concentration, leading to the formation of giant micrometer-sized fractals following diffusion-limited cluster aggregation. These dyad aggregates act as efficient quenchers of fluorescent dyes with a quenching rate of 4.6 x 10(13) M(-1) s(-1).  相似文献   

16.
Chen Y  Wan L  Yu X  Li W  Bian Y  Jiang J 《Organic letters》2011,13(21):5774-5777
A flexible 8-hydroxyquinoline benzoate linked Bodipy-porphyrin dyad has been designed, synthesized, and characterized. Binding of this dyad with Hg(2+)/Fe(2+) induced just the opposite (promoting/restraining) influence on energy transfer from the Bodipy donor to the porphyrin acceptor, resulting in a remarkably different ratio change of two signal emissions, endowing this dyad as the first Bodipy-porphyrin-based versatile fluorescence resonance energy transfer (FRET) ratiometric sensor for Hg(2+) and Fe(2+) ions, respectively.  相似文献   

17.
Two porphyrin-fullerene dyads were synthesized to form self-assembled monolayers (SAMs) on indium-tin oxide (ITO) electrode, with either ITO-porphyrin-fullerene or ITO-fullerene-porphyrin orientations. The dyads contain two linkers for connecting the porphyrin and fullerene moieties and enforcing them essentially to similar geometries of the donor-acceptor pair, and two linkers to ensure the attachment of the dyads to the ITO surface with two desired opposite orientations. The transient photovoltage responses (Maxwell displacement charge) were measured for the dyad films covered by insulating LB films, thus ensuring that the dyads interact only with the ITO electrode. The direction of the electron transfer was from the photoexcited dyad to ITO independent of the dyad orientation. The response amplitude for the ITO-fullerene-porphyrin structure, where the primary intramolecular electron-transfer direction coincides with the direction of the final electron transfer from the dyad to ITO, was 25 times stronger than that for the opposite ITO-porphyrin-fullerene orientation of the dyad. Static photocurrent measurements in a liquid electrochemical cell, however, show only a minor orientation effect, indicating that the photocurrent generation is controlled by the processes at the SAM-liquid interface.  相似文献   

18.
The conversion of solar energy to thermal, chemical, or electrical energy attracts great attention in chemistry and physics. There has been a considerable effort for the efficient extraction of photons throughout the entire solar spectrum. In this work light energy was efficiently harvested by using a long-lived betaine photogenerated from an acridinium-based electron donor–acceptor dyad. The photothermal energy-conversion efficiency of the dyad is significantly enhanced by simultaneous illumination with blue (420–440 nm) and yellow (>480 nm) light in comparison with the sum of the conversion efficiencies for individual illumination with blue or yellow light. The enhanced photothermal effect is due to the photogenerated betaine, which absorbs longer-wavelength light than the dyad, and thus the dyad–betaine combination is promising for efficient photothermal energy conversion. The mechanisms of betaine generation and energy conversion are discussed on the basis of steady-state and transient spectral measurements.  相似文献   

19.
The interaction between metalloporphyrins and their axial ligands plays an important role in the electron transfer (ET) processes in which the excited porphyrin participates. An efficient photoinduced ET reaction of a double-linked zinc(II) porphyrin-fullerene dyad was demonstrated in ionic environment. The chloride ion of tetrabutylammonium chloride (TBACl) electrolyte solution ligates the zinc porphyrin moiety in the dyad which results in a red shift of the absorption bands and lowers the energy of the charge-separated state by about 0.26 eV as compared to the nonligated dyad. Excitation of the porphyrin chromophore results in ET from porphyrin to fullerene in a moderately polar solvent, anisole. In nonionic and nonligating ionic environments, the ET reaction occurs through an intermediate state, an intramolecular exciplex, which has emission in the near-infrared region of the spectrum. This emission is not observed directly for the dyad in TBACl/anisole solution, but evidence of the exciplex intermediate was seen in the time-resolved measurements. The lower energy of the charge-separated state in the ligated environment explains the different ET reaction rates determined in the spectroscopic studies: the charge recombination process of the ligated dyad is about 5 times faster than that of the nonligated one.  相似文献   

20.
A chlorophyll-a derivative homo-dimer covalently linked with a flexible methylene-amino-methylene group at the 3-position was benzoylated to give the dyad bearing a CH2N(COPh)CH2 linker. The synthetic dyad with the relatively rigid spacer showed red-shifted visible absorption bands and was oxidized more readily, in comparison with the corresponding monomer. The optical and electrochemical properties of the dimer are ascribable to the partial π-stacking of chlorin moieties in the benzoylated dyad, mimicking the special dimeric species in reaction centers of photochemical systems in natural phototrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号