首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kirchhoff–Helmholtz integral is a powerful tool to model the scattered wavefield from a smooth interface in acoustic or isotropic elastic media due to a given incident wavefield and observation points sufficiently far away from the interface. This integral makes use of the Kirchhoff approximation of the unknown scattered wavefield and its normal derivative at the interface in terms of the corresponding quantities of the known incident field. An attractive property of the Kirchhoff–Helmholtz integral is that its asymptotic evaluation recovers the zero-order ray theory approximation of the reflected wavefield at all observation points where that theory is valid. Here, we extend the Kirchhoff–Helmholtz modeling integral to general anisotropic elastic media. It uses the natural extension of the Kirchhoff approximation of the scattered wavefield and its normal derivative for those media. The anisotropic Kirchhoff–Helmholtz integral also asymptotically provides the zero-order ray theory approximation of the reflected response from the interface. In connection with the asymptotic evaluation of the Kirchhoff–Helmholtz integral, we also derive an extension to anisotropic media of a useful decomposition formula of the geometrical spreading of a primary reflection ray.  相似文献   

2.
The problem of an isotropic linear elastic plane or half-plane weakened by a finite number of small holes is considered. The analysis is based on the complex potential method of Muskhelishvili as well as on the theory of compound asymptotic expansions by Maz’ya. An asymptotic expansion of the solution in terms of the relative hole radii is constructed. This expansion is asymptotically valid in the whole domain, i.e. both in the vicinity of the holes and in the far-field. The approach leads to closed-form approximations of the field variables and does not require any numerical approximation. Several examples of the interaction between holes or holes and an edge are presented.  相似文献   

3.
A horizontally polarized step-stress wave is incident on a semi-infinite crack in an elastic solid. At the instant that the crack tip is struck, the crack starts to propagate in the forward direction, but under an angle κπ with the plane of the original crack. In this paper a self-similar solution is obtained for the particle velocity of the diffracted cylindrical wave field. The use of Chaplygin's transformation reduces the problem to the solution of Laplace's equation in a semi-infinite strip containing a slit. The Schwarz-Christoffel transformation is employed to map the semi-infinite strip on a half-plane. An analytic function in the half-plane which satisfies appropriate conditions along the real axis, can subsequently be constructed. The Mode-III stress-intensity factor at the tip of the kinked crack has been computed for angles of incidence varying from normal to grazing incidence, for angles of crack kinking defined by -0.5?κ?0.5, and for arbitrary subsonic crack tip speeds.  相似文献   

4.
This paper is concerned with diffraction of short waves by a nonplanar screen (two-dimensional case, Dirichlet boundary condition). The high-frequency asymptotic approximation to the solution is obtained. First the wave field of the primary wave is found in a neighbourhood of the screen edge and then this field is continued along the boundary. Secondary waves arise here as the consequence of interaction between the edge and the primary wave. The secondary wave is diffracted by another edge of the screen, and a third order wave arises, and so on. This process gives the formulas for the wave field in a neighbourhood of the screen. Green's formula is used to continue the solution outside of this neighbourhood.  相似文献   

5.
The classical problem of wave diffraction on a half-plane with boundary conditions of different types and its generalizations to elastic media are considered. As a solution method it is proposed to combine the Fourier method of separation of variables and the series summation technique based on the use of integral representations of Bessel functions. The analytic solutions thus obtained are equally efficient in the near- and far-field diffraction regions. The two-term singularity at a corner point (in stresses for elastic media and in the velocity for acoustic media) was discovered for the first time. The knowledge of singularities in the scalar problem allowed one to construct the solution of the vector problem of elastic longitudinal wave diffraction. It is investigated how different types of boundary conditions on both sides of the half-plane affect the solution behavior in the far-field region. Possible physical interpretations of the obtained results are given.  相似文献   

6.
Within the framework of the acoustic approximation a solution of the plane nonstationary problem of impact on a fluid boundary is found. The fluid occupies the lower half-plane and consists of two layers with given speeds of sound and densities. The upper layer has a constant depth and is bounded above by a plate with a given normal velocity. The solution is constructed using the Fourier and Laplace integral transforms. Numerical calculations are performed for piston impact across a rigid screen and the impact of a jet with an aerated head on a rigid wall. It is shown that the presence of an interlayer with reduced speed of sound and/or density considerably changes the evolution of the hydrodynamic pressure distribution over the impacting surface: the absolute pressure maximum decreases but pressures of significant amplitude are maintained for a longer time than for a homogeneous fluid.  相似文献   

7.
A spectral iteration scheme is employed to analyze time-harmonic and transient scattering of an E- or H-polarized incident plane wave by a perfectly conducting plane strip. The scattered field is synthesized by successive interactions between the edges, with each interaction modeled by half-plane diffraction. The plane wave spectrum generating a particular order of diffraction consists, in addition to the incident plane wave excitation, of a portion determined from the previous diffraction. The multiple integral spectral representations constructed in this manner satisfy the edge condition, and they are in a form suitable for inversion into the time domain by the modified Cagniard-deHoop method. Asymptotic reductions for special cases yield agreement with results from other methods, when available. Numerical calculations including up to triple diffraction have been performed for H- and E-polarized impulse and Gaussian pulse scattering. The results are clearly seen to repair the deficiencies of wavefront approximations at longer observation times, and from comparison with data generated independently by eigenfunction expansion, they describe accurately the total scattered response, owing to the high damping rate of higher-order diffractions.  相似文献   

8.
The diffraction pattern due to a plane H-polarized electromagnetic wave is investigated, when this wave is incident upon an infinitely long slit of finite width in an opaque screen of non-vanishing thickness. The screen is located between the plane boundaries of two media with different electromagnetic properties. A Green's function formulation of the problem is employed, leading to a system of four coupled integral equations in which the field distributions in the slit occur as unknowns. Numerical results are presented for the field just below the screen as well as for the far field pattern.  相似文献   

9.
The work is devoted to the problem of plane monochromatic longitudinal wave propagation through a homogeneous elastic medium with a random set of spherical inclusions. The effective field method and quasicrystalline approximation are used for the calculation of the phase velocity and attenuation factor of the mean (coherent) wave field in the composite. The hypotheses of the method reduce the diffraction problem for many inclusions to a diffraction problem for one inclusion and, finally, allow for the derivation of the dispersion equation for the wave vector of the mean wave field in the composite. This dispersion equation serves for all frequencies of the incident field, properties and volume concentrations of inclusions. The long and short wave asymptotics of the solution of the dispersion equation are found in closed analytical forms. Numerical solutions of this equation are constructed in a wide region of frequencies of the incident field that covers long, middle, and short wave regions of propagating waves. The phase velocities and attenuation factors of the mean wave field are calculated for various elastic properties, density, and volume concentrations of the inclusions. Comparisons of the predictions of the method with some experimental data are presented; possible errors of the method are indicated and discussed.  相似文献   

10.
The problem of the diffraction of an arbitrary acoustic wave by a strip of finite width is solved. The solution is constructed by means of a generalization of the previously obtained integral for the problem of the diffraction of acoustic waves by a half-plane [5]. The problem of the diffraction of an arbitrary acoustic wave by the Riemannian manifold corresponding to the strip of finite width is first found. After this, by substitution of the values of the polar angle a solution is obtained for the reflected wave associated with diffraction on the Riemannian manifold, and then the boundary conditions on the surface of the strip are satisfied by means of a linear combination of these solutions. The problem of the diffraction of an arbitrary acoustic wave by a slit of finite width could be constructed in exactly the same way.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 171–175, March–April, 1991.  相似文献   

11.
求弹性半平面问题基本解的一个新方法   总被引:1,自引:0,他引:1  
本文所提到的弹性半平面问题的基本解是一个满足特殊条件的弹性半平面的应力位移解答。这些条件为:(1)半平面内一点处作用有集中力X,Y或集中力偶M;(2)半平面边界为自由或固定边。利用平面弹性的复变函数方法,文中把弹性半平面基本解的问题归结为下列问题,使一个特定解析函数和另一个解析函数的共轭值在半平面边界上相等。对上述转化后的问题,只要利用复变函数的性质,不难从基本解的第一部分推导出基本解的第二部分。其中,基本解的第一部分是弹性全平面的本基解。从而,半平面问题基本解可以方便地得到。此外,文中还首次给出了:(1)集中力偶作用于半平面内一点时的基本解;(2)当半平面边界固定情况下的基本解。  相似文献   

12.
This paper concerns the switching on of two-dimensional time-harmonic scalar waves. We first review the switch-on problem for a point source in free space, then proceed to analyse the analogous problem for the diffraction of a plane wave by a half-line (the ‘Sommerfeld problem’), determining in both cases the conditions under which the field is well-approximated by the solution of the corresponding frequency domain problem. In both cases the rate of convergence to the frequency domain solution is found to be dependent on the strength of the singularity on the leading wavefront. In the case of plane wave diffraction at grazing incidence the frequency domain solution is immediately attained along the shadow boundary after the arrival of the leading wavefront. The case of non-grazing incidence is also considered.  相似文献   

13.
To study the process of impact of a rigid body on the surface of an elastic body made of a composite material, we consider a nonstationary dynamic contact problem about the impact of a plane rigid die on an elastic orthotropic half-plane. The problem is reduced to solving an integral equation of the first kind for the Laplace transform of the contact stresses under the die base. An approximate solution of the integral equation is constructed with the use of a special approximation to the symbol of the kernel of the integral equation in the complex plane. The inverse Laplace transform of the solution results in determining the scalar contact stress field on the die base, the force exerted by the die on the elastic medium, and the vertical displacement field of the free surface of the orthotropic medium out side the die. The solutions thus obtained permit studying specific features of the process of die penetration into an orthotropic medium and the strain properties of the medium.  相似文献   

14.
An exact solution is obtained for onemore new diffraction problem whose transcendental difficulty has been known since Sommerfeld and Kirchhoff. The model of waveguide level gauge, where the main problem is the bulk diffraction of normal waves in a layered structure consisting of an elastic plate between two semi-infinite liquid layers, is investigated. The boundary value problem is solved by using a modification of the Wiener–Hopf factorization method; the factorization is used twice to solve two systems of underdetermined functional equations, and this is a specific characteristics of the problem and amethodological novelty. The proposed modification is acceptable for the class of such problems. The diffracted spectra are analyzed; the waveguide quasiresonances are physically treated; the effect of pure Lamb wave propagation under the liquid is established; the narrow-band backward-wave modes are determined.  相似文献   

15.
The dynamic contact problem of a plane punch motion on the boundary of an elastic half-plane is considered. The punch velocity is constant and does not exceed the Rayleigh wave velocity. The moving punch deforms the elastic half-plane penetrating into it so that the punch base remains parallel to itself at all times. The contact problem is reduced to solving a two-dimensional integral equation for the contact stresses whose two-dimensional kernel depends on the difference of arguments in each variable. A special approximation to the kernel is used to obtain effective solutions of the integral equation. All basic characteristics of the problem including the force of the punch elastic action on the elastic half-plane and the moment stabilizing the punch in the horizontal position in the process of penetration are obtained. A similar problem was considered in [1] and earlier in the “mode of steady-state motions” in [2, 3] and in other publications.  相似文献   

16.
SH波绕界面孔的散射   总被引:9,自引:1,他引:9  
用波函数展开方法研究了SH波绕界面孔的散射问题。由入射、反射和透射波组成的自由波场与孔的散射场叠加成总波场。按照一定方式将两个半平面散射波场延拓于全平面,通过Hankel-Fourier展开方法求得了任意形状孔散射场的级数解。以椭圆形孔为例计算了孔边缘的动应力集中系数。  相似文献   

17.
This paper deals with the problem of diffraction of elastic waves in the plane multiply-connected regions by the theory of complex functions. The complete function series which approach the solution of the problem and general expressions for boundary conditions are given.’ Then the problem is reduced to the solution to infinite series of algebraic equations and the solution can be directly obtained by using electronic computer. In particular, for the case of weak interaction, an asymptotic method is presented here, by which the problem ofp waves diffracted by a circular cavities is discussed in detail. Based on the solution of the diffracted wave field the general formulas for calculating dynamic stress concentration factor for a cavity of arbitrary shape in multiply-connected region are given.  相似文献   

18.
In this paper we present a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.  相似文献   

19.
20.
An exact analytic solution of the problem of diffraction of a plane acoustic wave on a cone of arbitrary aperture angle was obtained and studied in [1]. For the case of spherical wave diffraction on a cone a formula is known [2] which relates the solutions of the spherical and plane wave diffraction problems. This study will employ the results of [1, 2] to derive and investigate an exact analytical solution of the problem of diffraction of a spherical acoustic wave on a cone of arbitrary aperture angle. Results of numerical calculations will be presented and compared with analogous results for a plane wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 200–204, March–April, 1976.The author is indebted to S. V. Kochura for her valuable advice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号