首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The present study sought to clarify the role of non-simultaneous masking in the binaural masking level difference for maskers that fluctuate in level. In the first experiment the signal was a brief 500-Hz tone, and the masker was a bandpass noise (100-2000 Hz), with the initial and final 200-ms bursts presented at 40-dB spectrum level and the inter-burst gap presented at 20-dB spectrum level. Temporal windows were fitted to thresholds measured for a range of gap durations and signal positions within the gap. In the second experiment, individual differences in out of phase (NoSπ) thresholds were compared for a brief signal in a gapped bandpass masker, a brief signal in a steady bandpass masker, and a long signal in a narrowband (50-Hz-wide) noise masker. The third experiment measured brief tone detection thresholds in forward, simultaneous, and backward masking conditions for a 50- and for a 1900-Hz-wide noise masker centered on the 500-Hz signal frequency. Results are consistent with comparable temporal resolution in the in phase (NoSo) and NoSπ conditions and no effect of temporal resolution on individual observers' ability to utilize binaural cues in narrowband noise. The large masking release observed for a narrowband noise masker may be due to binaural masking release from non-simultaneous, informational masking.  相似文献   

2.
Temporal modulation transfer functions (TMTFs) were measured for detection of monaural sinusoidal amplitude modulation and dynamically varying interaural level differences for a single set of listeners. For the interaural TMTFs, thresholds are the modulation depths at which listeners can just discriminate interaural envelope-phase differences of 0 and 180 degrees. A 5-kHz pure tone and narrowband noises, 30- and 300-Hz wide centered at 5 kHz, were used as carriers. In the interaural conditions, the noise carriers were either diotic or interaurally uncorrelated. The interaural TMTFs with tonal and diotic noise carriers exhibited a low-pass characteristic but the cutoff frequencies changed nonmonotonically with increasing bandwidth. The interaural TMTFs for the tonal carrier began rolling off approximately a half-octave lower than the tonal monaural TMTF (approximately 80 Hz vs approximately 120 Hz). Monaural TMTFs obtained with noise carriers showed effects attributable to masking of the signal modulation by intrinsic fluctuations of the carrier. In the interaural task with dichotic noise carriers, similar masking due to the interaural carrier fluctuations was observed. Although the mechanisms responsible for differences between the monaural and interaural TMTFs are unknown, the lower binaural TMTF cutoff frequency suggests that binaural processing exhibits greater temporal limitation than monaural processing.  相似文献   

3.
A series of experiments evaluated the effects of broadband noise (ipsilateral) on wave V of the brainstem auditory evoked response (BAER) elicited by tone bursts or clicks in the presence of high-pass masking noise. Experiment 1 used 1000- and 4000-Hz, 60-dB nHL tone bursts in the presence of broadband noise. With increasing noise level, wave V latency shift was greater for the 1000-Hz tone bursts, while amplitude decrements were similar for both tone-burst frequencies. Experiment 2 varied high-pass masker cutoff frequency and the level of subtotal masking in the presence of 50-dB nHL clicks. The effects of subtotal masking on wave V (increase in latency and decrease in amplitude) increased with increasing derived-band frequency. Experiment 3 covaried high-pass masker cutoff frequency and subtotal masking level for 1000- and 4000-Hz tone-burst stimuli. The effect of subtotal masking on wave V latency was reduced for both tone-burst frequencies when the response-generating region of the cochlear partition was limited by high-pass maskers. The results of these three experiments suggest that most of the wave V latency shift associated with increasing levels of broadband noise is mediated by a place mechanism when the stimulus is a moderate intensity (60 dB nHL), low-frequency (1000 Hz) tone burst. However, the interpretation of the latency shifts produced by broadband noise for 4000-Hz tone-burst stimuli is made more complex by multiple technical factors discussed herein.  相似文献   

4.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

5.
The relation between the monaural critical band and binaural analysis was examined using an NoSm MLD paradigm, in order to resolve ambiguities about the width of the masking spectrum important for binaural detection. A 500-Hz pure-tone signal was presented with a 600-Hz-wide band of masking noise to the signal ear. Bands of noise ranging in width from 25 to 600 Hz, or noise notches (imposed on a 600-Hz-wide band centered on the signal frequency) ranging in width from 0 to 600 Hz were presented to the nonsignal ear. All noise bands and notches were centered on 500 Hz, the frequency of the signal. The effects of varying bandwidth were radically different from those of varying notchwidth: the MLD changed from zero to approximately 8 dB over a bandwidth range of 400 Hz; for notchwidths, however, the MLD changed 8 dB over a range of only 50 Hz. The results support an interpretation that the fine frequency selectivity of monaural analysis is preserved in peripheral binaural interaction, but that a relatively wide frequency range of critical bands is scanned at a later stage of binaural processing. It was suggested that the wide spectral range of binaural analysis may provide a background against which binaural differences due to the signal are detected.  相似文献   

6.
Experiment 1 examined detection and discrimination of monaural four-tone sequences composed of 400-, 500-, and 625-Hz sinusoids. In the baseline conditions, the masker was monaural composed of 25-Hz-wide bands of random noise centered on 320, 400, 500, 625, and 781 Hz. In the binaural masking release conditions, the noise was presented diotically. In the monaural masking release conditions, the noise was presented to the same ear as the signal, but it was comodulated. Tones had half-amplitude durations of 30, 60, or 150 ms. There was no delay between successive tones, so the rate of frequency change depended on tone duration. Listeners discriminated between sequences composed of 500-400-625-500 Hz and 500-625-400-500 Hz. Discrimination results were poor for rapid sequences in both monaural and binaural masking release conditions relative to baseline conditions. Results from experiment 2 indicated that poor discrimination for rapid sequences could also occur in the baseline conditions, provided that the frequency separation among tonal components was small. Sluggish processing in the present paradigm was not restricted to conditions relying on binaural cues. It is argued that sluggishness may reflect a long temporal window in monaural and binaural masking release conditions or an interaction between poor cue quality and task difficulty.  相似文献   

7.
Experiment 1 examined comodulation masking release (CMR) for a 700-Hz tonal signal under conditions of N(o)S(o) (noise and signal interaurally in phase) and N(o)S(π) (noise in phase, signal out of phase) stimulation. The baseline stimulus for CMR was either a single 24-Hz wide narrowband noise centered on the signal frequency [on-signal band (OSB)] or the OSB plus, a set of flanking noise bands having random envelopes. Masking noise was either gated or continuous. The CMR, defined with respect to either the OSB or the random noise baseline, was smaller for N(o)S(π) than N(o)S(o) stimulation, particularly when the masker was continuous. Experiment 2 examined whether the same pattern of results would be obtained for a 2000-Hz signal frequency; the number of flanking bands was also manipulated (two versus eight). Results again showed smaller CMR for N(o)S(π) than N(o)S(o) stimulation for both continuous and gated masking noise. The CMR was larger with eight than with two flanking bands, and this difference was greater for N(o)S(o) than N(o)S(π). The results of this study are compatible with serial mechanisms of binaural and monaural masking release, but they indicate that the combined masking release (binaural masking-level difference and CMR) falls short of being additive.  相似文献   

8.
A series of three experiments was undertaken to investigate detection of sinusoidal frequency modulation (FM) in the presence of FM at a separate frequency. The first experiment measured detection of modulation for an FM tone with a modulation frequency (fm) of 6 Hz as a function of carrier frequency (fc) under three conditions: (1) in quiet, (2) in the presence of a 2500-Hz pure tone, and (3) in the presence of a 2500-Hz FM tone with fm = 6 Hz, modulating in phase with the signal. Detection of FM in the presence of the second FM tone was worse than for either the signal presented in quiet or in the presence of the unmodulated tone. Threshold varied as an inverse function of frequency separation between the signal and the masker. In the second experiment, FM detection for a signal with fc = 1900 Hz and fm = 6 Hz was measured as a function of the modulation frequency (fm = 2-18 Hz) of the 2500-Hz masker tone. FM detection improved significantly with increasing difference between the modulation frequencies of the signal and the masker. The final experiment measured detection of FM for a signal (fc = 1900 Hz, fm = 6 Hz) in the presence of a second FM tone (fc = 2500 Hz, fm = 6 Hz) as a function of the relative phase of the 6-Hz modulators. Detection of FM improved monotonically as a function of increasing phase difference between the two modulators. The results are discussed in terms of modulation detection interference and perceptual grouping.  相似文献   

9.
The effective internal level of a 1-kHz tone at 50 dB SPL was estimated by measuring the forward masking produced on a 10-ms signal tone of the same frequency. Noise containing a spectral notch was then added to the masker tone, and its influence on the effective level of the tone was measured with a variety of noise levels, notch widths, and notch shapes. In experiment 1, the masker tone was centered in the spectral notch, itself centered in a 2-kHz band of noise. As the spectrum level in the noise passbands increased from 6 dB/Hz to 36 dB/Hz, signal threshold decreased, indicating a decrease in masking by the masker tone. This "unmasking" effect of the noise was attributed to suppression of the masker tone by the components in the noise. Unmasking was greatest with the narrowest spectral notch (250 Hz), and decreased to zero as the notch widened to 1500 Hz. Compared to its level when presented alone, the effective internal level of the masker tone could be reduced by up to 30 dB (250-Hz notch, 36 dB/Hz). The relative suppressive strength of individual noise components was estimated in experiment 2, in which the 1-kHz masker tone was located at one edge of a spectral notch, rather than in the center. Noise spectrum level was fixed at 16 dB/Hz. As notch width decreased to zero, on either the high-frequency or low-frequency side of the masker tone, its effective internal level was again reduced by approximately 30 dB. In a tentative analysis, the first derivative of the smoothed threshold function was taken, to provide an estimate of the relative contributions to suppression at 1 kHz of noise components between 250 and 1740 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A series of four experiments was undertaken to ascertain whether signal threshold in frequency-modulated noise bands is dependent upon the coherence of modulation. The specific goal was to determine whether a masking release could be obtained with frequency modulation (FM), analogous to the comodulation masking release (CMR) phenomenon observed with amplitude modulation (AM). It was hypothesized that an across-frequency grouping process might give rise to such an effect. In experiments 1-3, maskers were composed of three noise bands centered on 1600, 2000, and 2400 Hz; these were either comodulated or noncomodulated with respect to both FM and AM. In experiment 1, the modulation was sinusoidal, and the signal was a 2000-Hz pure tone; in experiment 2, the modulation was random, and the signal was an FM noise band centered on 2000 Hz. The results obtained showed that, given sufficient width of modulation, thresholds were lower in a coherent FM masker than in an incoherent FM masker, regardless of the pattern of AM or signal type. However, thresholds in multiband maskers were usually elevated relative to that in a single-band masker centered on the signal. Experiment 3 demonstrated that coherent FM could be discriminated from incoherent FM. Experiment 4 gave similar patterns of results to the respective conditions of experiments 2 and 3, but for an inharmonic masker with bands centered on 1580, 2000, and 2532 Hz. While within-channel processes could not be entirely excluded from contributing to the present results, the experimental conditions were designed to be minimally conducive to such processes.  相似文献   

11.
A series of three experiments used the method of magnitude estimation to examine binaural summation of the loudness of a 1000-Hz tone heard in the quiet and against various backgrounds of masking noise. In the quiet, binaural loudness as measured in sones, is twice monaural loudness. Two conditions of noise masking acted to increase the ratio of binaural/monaural loudness in sones above 2:1--that is, to produce supersummation. (1) When tone was presented to both ears, but masking noise to just one ear (dichotic stimulation), the loudness of the binaural tone was 30%-35% greater than the sum of the loudness of the monaural components. This increase in summation provides a suprathreshold analog to increases in threshold sensitivity observed with dichotic stimulation (masking-level differences). (2) Supersummation was also evident when tone and noise alike were presented to both ears (diotic stimulation); here, the binaural tone's loudness was 10%-25% greater than the sum of the monaural components. The increase in summation with diotic stimulation may be related to the characteristics of binaural summation of the noise masker itself.  相似文献   

12.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

14.
Several studies using bandlimited masking noise have indicated that NOSO frequency resolution is better than that for NOS pi. The present study examined NOSO and NOS pi frequency resolution with two different masking methods: bandlimited noise and notched noise. Noise spectrum levels of 10, 30, and 50 dB/Hz were used. Thresholds were determined for a 500-Hz signal, using a three-alternative forced-choice adaptive procedure, as a function of masker bandwidth and notchwidth. For NOSO presentation, 3-dB down points were comparable for the notched-noise and bandlimiting methods. For NOS pi presentation, 3-dB down points were generally greater for the bandlimiting method than the notched noise method. Furthermore, for NOS pi presentation, the 3-dB down estimate increased as noise level increased for the bandlimiting method, but stayed constant for the notched-noise method. It is suggested that the two masking methods measured different aspects of binaural processing.  相似文献   

15.
16.
Combined monaural and binaural masking release   总被引:1,自引:0,他引:1  
Stimulus conditions were examined where both across-frequency [comodulation masking release (CMR)] and across-ear [binaural masking-level difference (BMLD)] cues were available, as well as conditions where only one of these cue types was available. The main goal of the study was to determine how the two types of cues combine. The effects of comodulation were assessed either by modulating a masking noise and manipulating its bandwidth (experiment 1) or by using two comodulated narrow bands of noise separated in frequency (experiment 2). The masker was always No, and the 500-Hz pure-tone signal was either So or S pi. The effect of the frequency of modulation was examined either by changing the frequency of the modulating stimulus (experiment 1) or by changing the bandwidth of the comodulated narrow-band noise (experiment 2). Four of six subjects showed greater masking release when both BMLD and CMR cues were available than for either type of cue alone, whereas the other two subjects did not show an ability to combine the two cues for additional advantage. For the subjects who were able to combine the two types of cue, the additional advantage was greater for low frequencies of modulation. The results indicate that one component of CMR may be based upon across-frequency envelope comparisons at a stage of processing after binaural analysis.  相似文献   

17.
Auditory steady-state responses (ASSRs) were elicited by simultaneously presenting multiple AM (amplitude-modulated) tones with carrier frequencies of 500, 1000, 2000, and 4000 Hz and modulation frequencies of 77, 85, 93, and 102 Hz, respectively. Responses were also evoked by separately presenting single 500- or 2000-Hz AM tones. The objectives of this study were (i) to determine the cochlear place specificity of single and multiple ASSRs using high-pass noise masking and derived-band responses, and (ii) to determine if there were any differences between single- and multiple-stimulus conditions. For all carrier frequencies, derived-band ASSRs for 1-octave-wide derived bands ranging in center frequency from 0.25 to 8 kHz had maximum amplitudes within a 1/2 octave of the carrier frequency. For simultaneously presented AM tones of 500, 1000, 2000, and 4000 Hz, bandwidths for the function of derived-band ASSR amplitude by derived-band center frequency were 476, 737, 1177, and 3039 Hz, respectively. There were no significant differences when compared to bandwidths of 486 and 1371 for ASSRs to AM tones of 500 or 2000 Hz presented separately. Results indicate that ASSRs to moderately intense stimuli (60 dB SPL) reflect activation of reasonably narrow cochlear regions, regardless of presenting AM tones simultaneously or separately.  相似文献   

18.
A series of masking experiments was performed with the aim of comparing frequency selectivity for the monaural and binaural systems. The masking stimulus used in this study combined a sinusoid, which was gated simultaneously with the signal, with a continuous broadband noise. Signal frequency was fixed at 500 Hz. In one condition, the tonal masker and noise were interaurally in phase and the signal was phase reversed. In a second condition, noise, tonal masker, and signal were presented to one ear alone. Signal thresholds were obtained as a function of masker frequency for these two conditions. After making an appropriate selection of noise levels, masking functions for the monaural and binaural system conditions were found to agree closely except for a region about their tips where the binaural condition was more detectable. Two possible interpretations of these results are discussed. Either the monaural and binaural systems contain filters each which have similarly shaped skirts, or the frequency selectivity observed under both diotic and dichotic conditions (for large frequency separations of masker and signal) reflect the operation of a common peripheral filter.  相似文献   

19.
Vibrotactile thresholds for detecting a 300-Hz signal in the presence of both a 300-Hz sinusoidal pedestal and a background noise were measured as a function of the amplitudes of the pedestal and noise. Threshold increased monotonically as a function of the amplitude of the noise, but was a nonmonotonic function of the amplitude of the sinusoidal pedestal. Negative masking, in which the pedestal facilitated detection of the test stimulus, was observed in the absence of background noise and in the presence of subthreshold background noise when the pedestal was near or below threshold. Negative masking disappeared when the experiment was conducted in the presence of moderately intense to intense background noise. The results are consistent with a peripheral high-energy threshold for taction.  相似文献   

20.
The spectral resolution of the binaural system was measured using a tone-detection task in a binaural analog of the notched-noise technique. Three listeners performed 2-interval, 2-alternative, forced choice tasks with a 500-ms out-of-phase signal within 500 ms of broadband masking noise consisting of an "outer" band of either interaurally uncorrelated or anticorrelated noise, and an "inner" band of interaurally correlated noise. Three signal frequencies were tested (250, 500, and 750 Hz), and the asymmetry of the filter was measured by keeping the signal at a constant frequency and moving the correlated noise band relative to the signal. Thresholds were taken for bandwidths of correlated noise ranging from 0 to 400 Hz. The equivalent rectangular bandwidth of the binaural filter was found to increase with signal frequency, and estimates tended to be larger than monaural bandwidths measured for the same listeners using equivalent techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号