首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A safe and inexpensive synthesis of amides, from benzylic alcohols and nitriles and from t-butyl acetate and nitriles, using a Ritter reaction catalyzed by FeCl3·6H2O is described.  相似文献   

2.
Hui Guo  Yuwei Zhuang  Jian Cao 《合成通讯》2014,44(23):3368-3374
A green and efficient protocol for the synthesis of N-(2-hydroxyethyl)anilines by the selective alkylation reaction in ionic liquid [BMIM]BF4 (1-butyl-3-methylimidazolium tetrafluoroborate) has been developed, eliminating the need for toxic and expensive catalysts and volatile organic solvents. The effects of the amount of ionic liquid, temperature, time, and substrate structure on the reaction were investigated. The conversion and selectivity of N-(2-hydroxyethyl)anilines obtained in ionic liquid [BMIM]BF4 are significantly increased in comparison to those traditional methods. Furthermore, the ionic liquid could be easily separated and reused at least five times. It provided a simple and efficient alternative way for the industrial synthesis of N-(2-hydroxyethyl)anilines.  相似文献   

3.
The solvothermal reactions of Ti(OiPr)4 in alcohol using ionic liquid as additive were investigated. In the presence of [BMIM][Cl], [BMIM][Br], [BMIM][NTf2], [BMIM][SO3Me], [BMIM][SO4Me], or [BMIM][OTf] (BMIM = 1‐Butyl‐3‐methylimidazolium), pure anatase nanoparticles were obtained. The controlled hydrolysis of Ti(OiPr)4 in the presence of ionic liquids to form titanium oxo clusters plays a key role in the formation of anatase nanostructures, and ionic liquids can be repeatedly used to synthesise anatase nanoparticles. However, in the presence of [BMIM][PF6], [BMIM]2[Ti(OH)6] was obtained by an anion exchange reaction.  相似文献   

4.
A simple, efficient, facile and eco-friendly process for the synthesis of thioamides from nitriles using 1,6-bis(3- methylimidazolium-1-yl)hexane chloride [C6(mim)2Cl2] as a dicationic ionic liquid (DIL) was developed. The ionic liquid was easily separated from the reaction mixture and was recycled at least four times without any loss of its activity.  相似文献   

5.
The synthesis of N-substituted-1,8-naphthalimides is accelerated in the presence of the room temperature ionic liquid [BMIM][NO3]. Reaction times are reduced from 18 h in volatile organic compounds (VOCs) (PhCH3, EtOH and THF) to 20 min in the ionic liquid [BMIM][NO3]. The reaction yields are typically increased to >85% and the products are isolated by ethanol-mediated precipitation direct from the ionic liquid, requiring no further purification.  相似文献   

6.
Complexes of the type (η5-C5R5)Mo(CO)3X (X = Me, Cl; R = H, Me), being efficient homogeneous catalysts for the epoxidation of olefins, have been examined for their catalytic performance at 55 °C in systems containing room temperature ionic liquids (RTILs) of composition [BMIM]NTf2, [BMIM]PF6, [C8MIM]PF6 and [BMIM]BF4. The catalytic performance for cyclooctene epoxidation depends strongly on the water content of the system, the catalyst solubility in the RTIL, and the reaction behaviour of the RTIL under the applied reaction conditions. The catalysts can be recycled without significant loss of activity when a reaction system containing [BMIM]NTf2 and [BMIM]PF6 in a 4:1 relationship is used. High proportions of [BMIM]PF6 lead to a ring opening reaction (diol formation), due to HF formation and the presence of residual water.  相似文献   

7.
Chen  Zhitao  Zhong  Zibei  Xia  Zhining  Yang  Fengqing  Mu  Xiaojing 《Chromatographia》2012,75(1-2):65-70

The hydrophobic ionic liquid [BMIM]PF6 (1-butyl-3-methylimidazolium hexafluorophosphate) can interact with sodium dodecyl sulfate (SDS) micelles in aqueous solution and modify their physicochemical properties to produce a unique separation efficiency in micellar electrokinetic chromatography (MEKC). An MEKC method was developed using [BMIM]PF6 as a modifier for separating eight fluoroquinolone compounds (ciprofloxacin, enrofloxacin, gatifloxacin, ofloxacin, norfloxacin, enoxacin, pazufloxacin, and tosufloxacin). The effects of several parameters on the separation selectivity, e.g., pH, concentration of background electrolyte, concentration ratio and amount of [BMIM]PF6 and SDS, were investigated. Under the optimal conditions of 10 mmol L−1 sodium borate, pH 7.1, 1.7% (w/w) SDS, 1.5% (w/w) [BMIM]PF6 with 18 kV as running voltage, the eight investigated quinolone compounds were baseline separated within 15 min. The selectivity of the developed method differed from that of the simple SDS micelles system containing no ionic liquid. The results suggest that hydrophobic ionic liquids should be promising modifiers in capillary electrophoresis, especially in MEKC analysis.

  相似文献   

8.
The development of the Ritter reaction of N-(hydroxymethyl)saccharin with nitriles for the synthesis of N-[(saccharinyl)methyl]amides is reported. The success of this reaction relies on an operationally simple procedure and on the use of inexpensive reagents. The present method enables access to a variety of saccharin scaffolds of potential interest in medicinal chemistry in moderate to high yields. Furthermore, the scalability of this reaction was demonstrated by a multigram-scale transformation, without any loss of efficiency.  相似文献   

9.
Density and speed of sound measurements have been made on the systems containing the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and some organic solvents having a wide range of dielectric constants. Similar studies have been carried out for tetrabutylammonium hexafluorophosphate ([TBA][PF6]), which has common anion ([PF6]) with the studied ionic liquid. For the systems investigated, the apparent molar volumes and apparent molar isentropic compressibilities were determined and fitted to the Redlich–Mayer and the Pitzer equations from which the corresponding limiting values were obtained. These limiting values were used to obtain some information about ion–solvent interactions. Furthermore, using the ionic limiting apparent volume values for [TBA]+ from the literature and limiting apparent molar volume for the ionic liquid and [TBA][PF6] obtained in this work, the ionic limiting apparent molar volume values for the cation [BMIM]+ in different organic solvents were also estimated.  相似文献   

10.
Novel and convenient methodology for the construction of N-substituted amide derivatives have been developed from nitriles and alcohols using propylphosphonic anhydride (T3P®). This methodology is an alternate approach to the synthesis of amides via Ritter reaction, which is one of the classical methods for the synthesis of N-substituted amides from nitriles and alcohols. In this approach, first T3P® activates the alcohol which is then attacked by nitrile to form N-substituted amides. This methodology can also apply for the synthesis of benzhydryl ether. This developed protocol is one of the novel applications of T3P®.  相似文献   

11.
An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid-supported Nafion®NR50 with improved efficiency and reduced waste production.  相似文献   

12.
A simple and convenient procedure for the synthesis of nitriles by dehydration of aldoximes using an ionic liquid, 1-pentyl-3-methylimidazolium tetrafluoroborate, [pmim]BF4 under organic solvent-free condition, has been developed. A variety of aromatic, heteroaromatic and aliphatic aldoximes are converted to the corresponding nitriles. The ionic liquid is recovered and reused for subsequent reactions.  相似文献   

13.
An innovative soft chemical approach was applied, using ionic liquids as an alternative reaction medium for the synthesis of tellurium polycationic cluster compounds at room temperature. [Mo2Te12]I6, Te6[WOCl4]2, and Te4[AlCl4]2 were isolated from the ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) and characterized. Black, cube‐shaped crystals of [Mo2Te12]I6, which is not accessible by conventional chemical transport reaction, were obtained by reaction of the elements at room temperature in [BMIM]Cl/AlCl3. The monoclinic structure (P21/n, a = 1138.92(2) pm, b = 1628.13(2) pm, c = 1611.05(2) pm, β = 105.88(1) °) is homeotypic to the triclinic bromide [Mo2Te12]Br6. In the binulear complex [Mo2Te12]6+, the molybdenum(III) atoms are η4‐coordinated by terminal Te42+ rings and two bridging η2‐Te22– dumbbells. Despite the short Mo···Mo distance of 297.16(5) pm, coupling of the magnetic moments is not observed. The paramagnetic moment of 3.53 μB per molybdenum(III) atom corresponds to an electron count of seventeen. Black crystals of monoclinic Te6[WOCl4]2 are obtained by the oxidation of tellurium with WOCl4 in [BMIM]Cl/AlCl3. Tellurium and tellurium(IV) synproportionate in the ionic liquid at room temperature yielding violet crystals of orthorhombic Te4[AlCl4]2.  相似文献   

14.
Porous silica matrices of different pore sizes with confined ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate) [BMIM] [PF6] were prepared by sol‐gel technique using a tetraethyl orthosilicate (TEOS) precursor with an aim to study the changes in physico‐chemical properties of ionic liquid on confinement. It is found that on confinement 1) melting point decreases, 2) fluorescence spectra shows a red shift and 3) the vibrational bands are affected particularly those of imadazolium ring, which interacts more with the walls of the silica matrix. Preliminary theoretical calculations suggest that SiO2 matrix interact more with the heterocyclic group of [BMIM] cation than the tail alkyl chain end group resulting in significant changes in the aromatic vibrations.  相似文献   

15.
Francesca D'Anna 《Tetrahedron》2006,62(8):1690-1698
The kinetics of the elimination reaction of 1,1,1-tribromo-2,2-bis(phenyl-substituted)ethanes into the corresponding 1,1-dibromo-2,2-bis(phenyl-substituted)ethenes induced by amines were studied in three room temperature ionic liquids ([BMIM][BF4], [BMIM][PF6], [BdMIM][BF4]). In order to have information about reagent-ionic liquid interactions, the reaction was carried out over the temperature range (293.1-313.1 K). To study the effect of the amine on the rate and occurrence of the elimination reaction, several primary, secondary and tertiary amines with different structure (cyclic and acyclic), basicity and steric requirements were used. The data collected show that the reaction occurs faster in ionic liquids than in other conventional solvents. Furthermore, ionic liquids seem to be able to induce, for the studied reaction, a shift of mechanism from E1cb (in MeOH) versus E2 (in ionic liquid).  相似文献   

16.
The viability of Lewis‐acid ionic liquids for the synthesis of low‐valent bismuth compounds is demonstrated. At room temperature, elemental bismuth and bismuth(III) cations synproportionate in the ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) within minutes. The existence of bismuth polycations in the dark colored solution was proven by Raman spectroscopy. Dark‐red crystals of Bi5(AlCl4)3 were isolated from the ionic liquid and characterized by Raman spectroscopy and X‐ray crystallography (rhombohedral space‐group , a = 1187.1(2) pm, c = 3012.0(3) pm). The method allows the synthesis of bismuth cluster compounds under milder conditions than in high‐temperature melts and more conveniently and environmental friendly than in liquid SO2 with strongly oxidizing, toxic agents like SbF5 or AsF5.  相似文献   

17.
The diastereoselective intramolecular electroreductive coupling of several β-ketoesters and β-ketoamides has been accomplished at a tin cathode in ionic liquids and isopropanol (9:1). The ionic liquids used are 1-butyl-3-methylimidazolium bromide [BMIM]Br, 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4, 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MOEMIM]CF3COO and 1-methoxyethyl-3-methylimidazolium mesylate [MOEMIM]Ms. This methodology offers a clean and green process for the synthesis of functionalized carbocycles in good yields with excellent stereochemical control at three stereogenic centres.  相似文献   

18.
Batch extraction of uranium(VI) from uranyl nitrate solutions using TiAP in ionic liquids ([BMIM]PF6 and [HMIM]PF6) is studied. Effects of acidity, TiAP concentration in ionic liquid and temperature on distribution coefficient are studied. Results show that distribution coefficient increases with an increase in acidity and reduces with an increase in the alkyl chain length of the cation of the ionic liquid. Extraction of uranium(VI) by TiAP-[HMIM]PF6 system is found to involve two molecules of the extractant per metal ion and extraction is found to change from being exothermic to endothermic as the percentage of the extractant is increased.  相似文献   

19.
Three ionic liquids, [BMIM][BF4] doped with 60 mol % of LiCl ([BMIM][BF4]-LiCl), N,N,N,N-tetramethylguanidinium trifluoroacetate (TMGT), and N,N,N,N-tetramethylguanidinium triflate (TMGTf) were found useful as catalyst solvents for controlled 3-indolylation of isatins. Our investigation revealed that the reaction between isatin and indoles in [BMIM][BF4]-LiCl or TMGTf media stops at the step of addition of the two components providing 3-indolyl-3-hydroxyindolin-2-ones while the ionic liquid TMGT runs the reaction further through accompanying Friedel-Crafts substitution to afford symmetrical 3,3-di(indol-3-yl)indolin-2-ones. To take advantage of the difference between the effects of these ionic liquids on the reaction progress, we planned a two-step protocol for the efficient synthesis of unsymmetrical 3,3-di(indol-3-yl)indolin-2-ones.  相似文献   

20.
An efficient and green procedure for the synthesis of novel 12‐aryl‐8,9,10,12‐tetrahydrobenzo[a]xanthen‐11‐one derivatives has been described through one‐pot condensation of 2‐naphthol, arylaldehyde and 5,5‐dimethyl‐cyclohexane‐1,3‐dione in the presence of sulfamic acid (NH2SO3H) in ionic liquid 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4). These reactions proceed with good yields under short reaction time. Furthermore, the green catalytic system can be recycled specific times with no decreases in yields and reaction rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号