首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous glutathione (GSH) and glutathione disulfide (GSSG) status is highly sensitive to oxidative conditions and have broad application as a surrogate indicator of redox status in vivo. Established methods for GSH and GSSG quantification in whole blood display limited utility in human plasma, where GSH and GSSG levels are ~3–4 orders of magnitude below those observed in whole blood. This study presents simplified sample processing and analytical LC–MS/MS approaches exhibiting the sensitivity and accuracy required to measure GSH and GSSG concentrations in human plasma samples, which after 5-fold dilution to suppress matrix interferences range from 200 to 500 nm (GSH) and 5–30 nm (GSSG). The utility of the methods reported herein is demonstrated by assay performance and validation parameters which indicate good sensitivity [lower limits of quantitation of 4.99 nm (GSH) and 3.65 nm (GSSG), and high assay precision (intra-assay CVs 3.6 and 1.9%, and inter-assay CVs of 7.0 and 2.8% for GSH and GSSG, respectively). These methods also exhibited exceptional recovery of analyte-spiked plasma samples (98.0 ± 7.64% for GSH and 98.5 ± 12.7% for GSSG). Good sample stability at −80°C was evident for GSH for up to 55 weeks and GSSG for up to 46 weeks, with average CVs <15 and <10%, respectively.  相似文献   

2.
Araujo AR  Saraiva ML  Lima JL 《Talanta》2008,74(5):1511-1519
This work reports the development of a simple, robust, automated sequential injection analysis (SIA) system for the enzymatic determination of total (tGSH) and oxidized (GSSG) glutathione in human whole blood. The reduced (GSH) glutathione concentration is then obtained as the difference between the tGSH and GSSG concentrations. The determination was based on the DTNB–GSSG reductase recycling assay, which couples the specificity of the GSSG reductase (GR) with an amplification of the response to glutathione, followed by spectrophotometric detection of the 2-nitro-5-thiobenzoic acid (TNB) formed (λ = 412 nm). The implementation of this reaction in a SIA flow system with an in-line dilution strategy permitted the necessary distinct application ranges for tGSH and for GSSG. It also guaranteed the exact timing of fluidic manipulations and precise control of the reaction conditions.

The influence of parameters such as reagents concentration, temperature, pH, flow rate of the carrier buffer solution, as well as reaction coil length, etc., on the sensitivity and performance of the SIA system were studied and the optimum reaction conditions subsequently selected. Linear calibration plots were obtained for GSH and GSSG concentrations up to 3.00 and 1.50 μM, with detection limits of 0.031 and 0.014 μM, respectively. The developed methodology showed good precision, with a relative standard deviation (R.S.D.) < 5.0% (n = 10) for determination of both glutathione forms. Statistical evaluation showed good compliance, for a 95% confidence level, between the results obtained with the SIA system and those furnished by the comparison batch procedure.  相似文献   


3.
Glutathione (GSH), glutathione disulfide (GSSG) and 2‐hydroxyethylated glutathione (HESG) are important biomarkers for exploring the genotoxicity mechanism of ethylene oxide (EO) or ethylene in vivo. A liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of GSH, GSSG and HESG in mouse lung tissues after inhalation exposure to EO. The lower limit of quantitation for all these biomarkers was 0.002 µg/mL. The linearity of the calibration curves for all analytes was >0.998. The intra‐day assay precision relative standard deviation (RSD) values for quality control samples for all analytes were ≤12.8% with accuracy values ranging from 87.2 to 113%. The inter‐day assay precision (RSD) values for all analytes were ≤13.1% with accuracy values ranging from 86.9 to 103%. This method was applied to concurrently determine the levels of GSH, GSSG and HESG in lung samples isolated from mouse after 4‐week inhalation exposure to EO at 0, 10, 50, 100 and 200 ppm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Glutathione (GSH) and glutathione disulfide (GSSG) levels in cells constitute a thiol redox system. They can be used as an indicator of oxidative stress of the cell. In this study, a capillary zone electrophoresis (CZE) method is described that enables quantitation of GSH and GSSG from cellular extracts. The CZE buffer used was 20 mM ammonium acetate containing 5% (v/v) acetic acid at pH 3.1 in conjunction with a polybrene coated capillary operated in reverse polarity mode. Effects of different acids used to prepare cell samples were investigated on CZE performance. The acids include meta phosphoric acid (MPA), trichloroacetic acid (TCA), phosphoric acid (PA) and sulfosalicylic acid (SSA) and are used to stabilize GSH and GSSG before performing CZE analysis. The method features a limit of detection of 4 microM and a limit of quantitation of 12 microM for both GSSG and GSH and recoveries of 94% for GSH and 100% for GSSG. Quantitative analysis of GSSG and GSH in HaCaT cell extracts (5% SSA, w/v) was performed with this method and changes in the ratio of GSH to GSSG in N-ethylmaleimide treated cell sample was observed by comparing with control cell samples.  相似文献   

5.
A simple and rapid colorimetric coupled enzymatic assay for the determination of glutathione is described. The proposed method is based on the specific reaction catalyzed by γ-glutamyltransferase, which transfers the γ-glutamyl moiety from glutahione to an acceptor, with the formation of the γ-glutamyl derivative of the acceptor and cysteinylglycine. The latter dipeptide is a substrate of leucyl aminopeptidase, which hydrolyzes cysteinylglycine to glycine and cysteine that can be easily measured spectrophotometrically. The proposed method was used to measure the content of glutathione in acid extracts of bovine lens, to follow the NADPH-dependent reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) catalyzed by the enzyme glutathione reductase and to determine the glutathione content in human astrocytoma ADF cells subjected to oxidative stress. The results obtained showed that the method can be suitably used for the determination of GSH and GSSG in different biological samples and to monitor tissue or cell redox status under different conditions. It is also applicable for following reactions involving GSH and/or GSSG.
Fig
Colorimetric method for the specific measurement of glutathione. γ-glutamyltransferase (γ-GT) transfers the γ-glutamyl moiety from glutathione to an acceptor (Gly-Gly), with the formation of γ-glutamyl-Gly-Gly and Cys-Gly. The latter dipeptide is hydrolized by leucyl-aminopeptidase (LAP) to form cysteine, which can be easily measured using a colorimetric assay at 560 nm  相似文献   

6.
A reverse-phase HPLC method incorporating dithiothreitol (DTT) reduction for quantitative determination of oxidized glutathione (GSSG) in biological samples is described here. This method is based on our previous enzymatic reduction technique that uses N-1-(pyrenyl) maleimide (NPM) as a derivatizing agent. In our earlier method, glutathione disulfide (GSSG) was measured by first reducing it to GSH with glutathione reductase (GR) in the presence of NADPH. However, this is a very costly and time-consuming technique. The method described here employs a common and inexpensive thiol-disulfide exchanging agent, DTT, for reduction of GSSG to GSH, followed by derivatization with NPM. The calibration curves are linear over a concentration range of 25-1250 nm (r(2) > 0.995). The coefficients of variations for intra-run precision and inter-run precision range from 0.49 to 5.10% with an accuracy range of 1.78-6.15%. The percentage of relative recovery ranges from 97.3 to 103.2%. This new method provides a simple, efficient, and cost-effective way of determining glutathione disulfide levels with a 2.5 nm limit of detection per 5 microL injection volume.  相似文献   

7.
Hepatotoxicity of drug candidates is one of the major concerns in drug screening in early drug discovery. Detection of hepatic oxidative stress can be an early indicator of hepatotoxicity and benefits drug selection. The glutathione (GSH) and glutathione disulfide (GSSG) pair, as one of the major intracellular redox regulating couples, plays an important role in protecting cells from oxidative stress that is caused by imbalance between prooxidants and antioxidants. The quantitative determination of the GSSG/GSH ratios and the concentrations of GSH and GSSG have been used to indicate oxidative stress in cells and tissues. In this study, we tested the possibility of using the biliary GSSG/GSH ratios as a biomarker to reflect hepatic oxidative stress and drug toxicity. Four compounds that are known to alter GSH and GSSG levels were tested in this study. Diquat (diquat dibromide monohydrate) and acetaminophen were administered to rats. Paraquat and tert-butyl hydroperoxide were administered to mice to induce changes of biliary GSH and GSSG. The biliary GSH and GSSG were quantified using calibration curves prepared with artificial bile to account for any bile matrix effect in the LC–MS analysis and to avoid the interference of endogenous GSH and GSSG. With four examples (in rats and mice) of drug-induced changes in the kinetics of the biliary GSSG/GSH ratios, this study showed the potential for developing an exposure response index based on biliary GSSG/GSH ratios for predicting hepatic oxidative stress.  相似文献   

8.
The present work was aimed to the development of a fluorescence assay using the universal 96-well microplate format, for the measurement of reduced glutathione (GSH) in yeast cells. The method relies upon the reaction between GSH and a highly selective fluorogenic probe, i.e. naphthalene-2,3-dicarboxaldehyde (NDA). The optimization of the method included the extraction step of GSH from cultured yeast cells in a cold perchloric acid solution, derivatization conditions (10-min reaction at pH 8.6 and at 20 ± 2 °C in darkness) and stability studies of the resulting fluorescent adduct. Full selectivity was observed versus other endogenous thiols (except for γ-glutamylcysteine), glutathione disulfide (GSSG) and enzymatic reducing reagents of GSSG. Linearity was verified in the range 0.3-6.5 μM (R2 > 0.98) and limits of quantification and detection were 0.3 and 0.05 μM, respectively. Relative standard deviation corresponding to repeatability (n = 3) and inter-day precision (n = 5) were 2.8 and 6.1%, respectively. Mean GSH recovery from cell extracts was 95%. The method appeared highly correlated (R2 = 0.96) with a previously reported HPLC method.The method was then applied to the monitoring of GSH in the yeast strain Kluyveromyces lactis during its growth period and in the presence of an inhibitor of GSH biosynthesis. The method presents the main advantage of a high throughput for the measurement of biological samples. The extent of the method to the study of the redox couple GSSG/GSH by including an enzymatic reduction step and the enhancement of the fluorescence signal using cyclodextrins were discussed.  相似文献   

9.
Li  Min  Mao  Sifeng  Wang  Shiqi  Li  Hai-Fang  Lin  Jin-Ming 《中国科学:化学(英文版)》2019,62(1):142-150
Alterations in the ratio of glutathione(GSH) to glutathione disulfide(GSSG) reveal the cell living state and are associated with a variety of diseases. In this study, an Au NPs grafted nanoporous silicon chip was used for surface assisted laser desorption ionization-mass spectrometry(SALDI-MS) detection of GSH. Due to the bond interaction between thiol of GSH and Au NPs modified on the chip surfaces, GSH could be captured from the complex cellular lysate. Meanwhile, the composite nanostructures of Au NPs grafted porous silicon surface presented good desorption/ionization efficiency for GSH detection. The GSH levels in different tumor cells were successfully detected. Chip-based SALDI-MS was optimized for quantification of intracellular GSH/GSSG ratio changing under drug stimulation in liver tumor cells, GSSG was reduced to GSH by reductant of tris(2-carboxyethyl)phosphine(TCEP) and isotope-labeling GSH was as an internal standard. It was found that the increasing concentration of drug irinotecan and hypoxia culture condition caused the rapid consumption of GSH and a decrease of GSH/GSSG ratio in liver tumor cells. The developed SALDI-MS method provided a convenient way to accurately measure and rapidly monitor cellular GSH value and the ratios of GSH/GSSG.  相似文献   

10.
Biological thiols and disulfides in rat and hamster tissues were simultaneously determined by HPLC-fluorescence detection using 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F) and ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). The coefficients of variation (CV) of the method for reduced glutathione (GSH) and oxidized glutathione (GSSG) in liver and for cysteine (CySH) and cystine (CySSCy) in kidney were less than 3.1%. In 11 tissues of Wistar rats (liver, spleen, heart, lung, stomach, bladder, ovary, uterus, adrenal, kidney and pancreas), only CySH, CySSCy, GSH and/or GSSG were detected. Other thiols and disulfides were at extremely low levels in all samples. Both concentrations of CySH and CySSCy in the livers of old rats (111 weeks old, F344) were significantly higher than those of young rats (8 weeks old) (CySH, 0.246 +/- 0.099 vs 0.130 +/- 0.020 mumol/g; CySSCy, 0.051 +/- 0.027 vs 0.013 +/- 0.002 mumol/g). Administration of N-nitrosobis(2-oxopropyl)amine (BOP), a selective carcinogen of hamster pancreatic cancer, to Syrian golden hamsters (38 weeks old) resulted in the increase in the pancreas of GSH to a level 19 times as high and of GSSG to a level 14 times as high as those in untreated hamsters (GSH, 1.173 +/- 0.272 vs 0.062 +/- 0.017 mumol/g; GSSG, 0.155 +/- 0.063 vs 0.011 +/- 0.001 mumol/g).  相似文献   

11.
The synthesis of a novel Tb(III) luminescent probe for the detection of thiols is presented. The probe 1.Tb, possessing a maleimide moiety, as its sulfhydryl acceptor, was poorly emitting in aqueous pH 7 solution in the absence of a thiol. However, upon addition of thiols such as glutathione (GSH), large enhancements were observed, particularly within the physiological pH range. In contrast no enhancements were observed in the presence of the oxidized form of glutathione (GSSG), except in the presence of the enzyme glutathione reductase and NADPH which enabled 1.Tb to be used to observe the enzymatic reduction of GSSG to GSH in real time.  相似文献   

12.
Methods for quantifying the level of glutathione (GSH) in yeast cell lysate are described using 1H NMR analysis. For quantification purposes, the 1H resonances corresponding to the Cys βCH2 of GSH were identified as having the fewest overlapping spectral interferences from lysate matrix components using GSH spiked yeast lysate samples. Two methods, standard addition based on peak integration and a spectral subtraction approach, were evaluated for quantifying GSH in lysate samples. The peak integration procedure required baseline estimation and a peak fitting step to correct for background interferences while the spectral subtraction procedure was comparatively straightforward. The level of GSH measured by 1H NMR was in good agreement with the concentration measured by the DTNB-GSSG reductase recycling assay. The proposed NMR method can lead to a reliable quantitation of GSH and could be applicable to a variety of other analytes of interest in complex biological matrices.  相似文献   

13.
A method for the separation of reduced (GSH) and oxidized (GSSG) glutathione was optimized in terms of buffer concentration, sodium dodecyl sulfate concentration, buffer pH, detection wavelength, run voltage and injection volume. The method demonstrated good linearity (r2 > 0.999) and reproducibility (internal standard corrected peak area RSD < 2.3%) in the range of interest (16-81 microM GSH and 8-40 microM GSSG). A detection limit of less than 1 microM GSH and GSSG was obtained using a high sensitivity flow cell. When the optimized method was applied to plasma samples, concentrations of 1.6 microM GSH and 0.8 microM GSSG were easily detected without the need for derivatization. The on-capillary detection was calculated to be 38.6 fmol of GSH and 18.3 fmol of GSSG.  相似文献   

14.
A simple and highly effective reversed-phase (RP) high-performance liquid chromatography (HPLC) method is described for analysing glutathione (GSH) and glutathione disulfide (GSSG) in out-flowing supernatants and lysates of perfusion cell cultures of human kidney cells (HK-2 cells) continuously exposed to cadmium chloride (CdCl2), which is a well-known nephrotoxin. The developed linear liquid chromatographic gradient employs monolithic poly(styrene-co-divinylbenzene) (PS/DVB) as a stationary phase and is adaptable for coupling to mass spectrometry via an electrospray ionisation interface (LC-ESI/MS), which is carried out in case of co-eluting peaks. This study presents a quantitative assay of glutathione over the time of experiment and cell lysates at the end of the experiment. The assay of out-flowing supernatants has the potential to be applied as an online assay in high time resolution. Glutathione (reduced and oxidised, GSH and GSSG) is chosen as an indicator for toxic effects in the cultured cells. In principle it is possible to show the concentration of glutathione as a function of time in an investigation of exposure of the HK-2 cell line to CdCl2. In addition to glutathione analysis, well-established assays of cell death such as enzyme release and cell viability are performed to obtain information about the number of living cells. Toxicity of 5 μM CdCl2 is manifested in all of the assays applied. Fast (<7 min) and highly reproducible (max. aberration 4.7%) determination of glutathione could be achieved.  相似文献   

15.
We describe a very rapid high-performance capillary electrophoresis method for the separation and quantification of reduced (GSH) and oxidized (GSSG) glutathione in red blood cells. Two procedures for sample preparation have been compared, Microcon-10 membrane filtration and acid precipitation. The separation is obtained in an uncoated capillary using a high ionic strength borate buffer at pH 7.8. The intra-assay coefficients of variation (CVs%) are 1.53 and 1.66 for GSH and GSSG, respectively. The run is shorter than 90 s and the migration time is highly reproducible both for GSH (CV% 0.22) and GSSG (CV% 0.17). When the filtration step is used only GSH is found, whereas both GSH and GSSG are detectable after acid precipitation, suggesting that GSSG revealed after acid treatment may be an artefact due to GSH oxidation. Because of its good analytical performance this method could be used for routine red blood cell glutathione measurement in healthy or pathological conditions.  相似文献   

16.
Summary An ion-exchange high-performance liquid chromatographic method is described for the quantitative assay of glutathione (GSH) conjugates derived from endogenous electrophilic substances as well as xenobiotics. GSH (reduced and oxidized forms) and GSH conjugates were condensated with o-phthaldialdehyde to highly fluorescent derivatives and monitored at 338 nm excitation and 450 nm emission wavelengths after separation by ion-exchange HPLC on a 60-5NH2 Polygosil analytical column. The detection limit was 2 pmol for the GSH conjugate of cholesterol epoxide and 6 pmol for the GSH conjugate of oleic acid epoxide. This method allows sensitive determination of all GSH conjugates independent of the chromatographic and spectrophotometric properties of the electrophilic substrates. Using this method we could show for the first time that the endogenous compound oleic acid epoxide is a specific substrate for the cytosolic rat liver GSH S-transferase. The method is applied to the determination of GSH S-transferase activity towards oleic acid epoxide and cholesterol epoxide.  相似文献   

17.
Glutathione (GSH), glutathione disulfide (GSSG), and ophthalmic acid (OA) are important biological oxidative stress biomarkers to be monitored in pathological and toxicological studies. With the advent of liquid chromatography tandem mass spectrometry (LC-MS-MS) technology, sensitive and selective analysis of these biomarkers in biological samples is now being performed routinely. Due to the hydrophilic and polar natures of GSH and its endogenous derivatives, achieving good retention, resolution, and peak shape is often a chromatographic challenge. In this study, three ultra-performance (UP) LC column chemistries (namely, BEH C18, BEH HILIC, and HSS T3 [C18]) are evaluated for the UPLC-MS-MS analysis of GSH, GSSG, and OA extracted from mouse liver and human plasma samples. The chromatographic parameters evaluated are retentivity, tailing factor, MS sensitivity, and resolution of the three analytes. Based on the optimized method for each column chemistry, our results indicate that the HSS T3 (C18) column chemistry affords the best retention and separation of these analytes when operated under the ultra high-pressure chromatographic conditions.  相似文献   

18.
A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the identity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and glutathione disulfide (GSSG). Cysteine, GSH, CSSC and GSSG are present at low concentrations in rainbow trout (Oncorhynchus mykiss) liver cells. Initially, hepatic cells were sampled from a suspension culture and disrupted upon addition of 10% perchloric acid. The reduced thiols present in the cell extracts were acetylated to prevent dimerization and then the C and GSH species were derivatized with dansyl chloride for fluorescence detection. An LC system using a weak anion exchange column (AE) with fluorescence detection (FLD) was used for sensitive routine analysis; however, it produced peaks of unknown origin in addition to the expected analytes. Analytes were then separated on a C18 RP-LC system using a water/acetonitrile gradient with 0.2% formic acid, and detected using LC/ESI-MS at 3.5 KV which produced an intense ion with a minimum limit of detection of less than 0.5 pmole injected (>10:1 signal-to-noise (S/N). Subsequently, fractions of effluent from the AE-LC/FLD system were analyzed by LC/ESI-MS to confirm the presence of the target analytes in routine cell extracts. Monodansylated GSSG was identified as a product that could possibly affect the quantification of GSH and GSSG.  相似文献   

19.
Cu2+ ions and reduced glutathione (GSH) swiftly interact to form the physiologically occurring Cu(I)–[GSH]2 complex. Prompted by the recently reported ability of this complex to generate superoxide radicals from molecular oxygen, the present study addressed how the concentration of Cu2+ and GSH, the pH, and the temperature affect the formation of the Cu(I)–[GSH]2 complex and its capacity to generate superoxide radicals and hydrogen peroxide. Increasing concentrations of Cu2+ and GSH, added at a fixed molar ratio of 1:3, led to a proportionally greater production of superoxide anions, hydrogen peroxide, and oxidized glutathione (GSSG). GSSG formation was found to closely reflect the formation of Cu(I)–[GSH]2. Biologically relevant changes in pH (e.g., from 6.8 to 7.7) and temperature (from 22 to 37 °C) did not affect the formation of the Cu(I)–[GSH]2, as assessed by GSSG production. However, production of superoxide radicals increased as the pH values were incremented. An opposite effect was observed regarding hydrogen peroxide production. The ability of a freshly prepared Cu(I)–[GSH]2 complex (assayed within a minute from its formation) to generate superoxide radicals was incremented by as the temperature was increased. Such ability, however, correlated inversely with the temperature when, before assaying for superoxide, the earlier referred preparation was incubated during 30 min in the presence of oxygen. Under the latter condition, hydrogen peroxide linearly accumulated in time, suggesting that an increased autodismutation underlies the apparent time-dependent “aging” of the capacity of the complex to generate superoxide.  相似文献   

20.
The high sensitivity that can be attained using an enzymatic system and mediated by catechols has been verified by on-line interfacing of a rotating biosensor and continuous flow/stopped-flow/continuous-flow processing. Horseradish peroxidase, HRP, [EC 1.11.1.7], immobilized on a rotating disk, in presence of hydrogen peroxide catalyzed the oxidation of catechols, whose back electrochemical reduction was detected on glassy carbon electrode surface at −150 mV. Thus, when l-cysteine (Cys) or glutathione (GSH) was added to the solution, these thiol-containing compounds participate in Michael addition reactions with catechols to form the corresponding thioquinone derivatives, decreasing the peak current obtained proportionally to the increase of its concentration. Cys was used as the model thiol-containing compound for the study. The highest response for Cys was obtained around pH 7. This method could be used to determine Cys concentration in the range 0.05-90 μM (r = 0.998) and GSH concentration in the range 0.04-90 μM (r = 0.999). The determination of Cys and GSH were possible with a limit of detection of 0.7 and 0.3 nM, respectively, in the processing of as many as 25 samples per hour. Current response of the HRP-rotating biosensor is not affected by the oxidized form of GSH and Cys (glutathione disulfide, GSSG, and l-cystine, respectively), by sulfur-containing and alkyl-amino compounds such as methionine and lysine, respectively. The interferences from easily oxidizable species such as ascorbic acid and uric acid are lowest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号