首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of the [1-Ph-closo-1-CB9H(4)-6,7,8,9,10-I5]- anion with 4-MeC6H4MgBr in the presence of [PdCl2(PPh3)2] gives the [Pd2I2(P(C6H(4)-4-Me)3)4]2+ salt of the [1-Ph-closo-1-CB9H(4)-10-I-6,7,8,9-(C6H(4)-4-Me)4]- anion, which exhibits an unusual neutral supramolecular assembly in the solid state, in which the dipalladium dication is encapsulated by two four-armed 'tetrapus' anionic units; the anion also has potentialities for four-fold dendrimer construction.  相似文献   

2.
Alkynes R(1)R(2)C(2) react with the neutral monocarbaborane arachno-4-CB(8)H(14) (1) at elevated temperatures (115-120 degrees C) under the formation of the derivatives of the ten-vertex dicarbaborane nido-5,6-C(2)B(8)H(12) (2) of general formula 9-Me-5,6-R1,R2-nido-5,6-C(2)B(8)H(9) (where R1,R2 = H,H 2a; Me,Me 2b; Et,Et 2c, H,Ph 2d, and Ph,Ph 2e) in moderate yields (26-52%). Side reaction with PhC(2)H also yields 1-Ph-6-Me-closo-1,2-C(2)B(8)H(8) (3d). In contrast, the reaction between [arachno-4-CB(8)H(13)](-) anion ((-)) and PhC(2)H produces a mixture of the closo anions [1-CB7H8]- (4-) and [1-CB6H7]- (5-) (yields 32 and 24%, respectively). Individual compounds were isolated and purified by liquid chromatography and characterized by NMR spectroscopy ((11)B, (1)H and (13)C) combined with two-dimensional [(11)B-(11)B]-COSY and (1)H-{(11)B(selective)}NMR techniques.  相似文献   

3.
Some synthetic and structural systematics for monocarbaboranes, using the C-phenylated motif as the example, are investigated. The 10-vertex [6-Ph-nido-6-CB(9)H(11)](-) anion 1, from reaction of PhCHO with B(10)H(14) in KOH/H(2)O, is a useful entry synthon into C-phenyl monocarbaborane chemistry. Treatment of anion 1 with Na/thf yields the 10-vertex [1-Ph-closo-1-CB(9)H(9)](-) anion 2a, whereas treatment of anion 1 with iodine in alkaline solution yields the isomeric 10-vertex [2-Ph-closo-2-CB(9)H(9)](-) anion 2b, which isomerises quantitatively to 2a on heating under reflux in DME. Thermolysis of anion 1 yields the 9-vertex [4-Ph-closo-4-CB(8)H(8)](-) anion 5, whereas treatment of anion 1 with FeCl(3)/HCl gives neutral 9-vertex [4-Ph-arachno-4-CB(8)H(13)] 3. Compound 3 gives neutral 9-vertex [1-Ph-nido-1-CB(8)H(11)] 4 in refluxing toluene, and gives the 7-vertex [2-Ph-closo-2-CB(6)H(6)](-) anion 7 and the 8-vertex [1-Ph-closo-1-CB(7)H(7)](-) anion 6 in refluxing toluene with NEt(3). Reaction of 1 with [BH(3)(thf)] yields the 11-vertex [7-Ph-nido-7-CB(10)H(12)](-) anion 8 which can be converted to the 12-vertex [1-Ph-closo-1-CB(11)H(11)](-) anion 10 using [BH(3)(SMe(2))]; alternatively, anion 1 yields anion 10 directly on treatment with [BH(3)(NEt(3))]. Treatment of anion 8 with I(2)/KOH yields the 11-vertex [2-Ph-closo-2-CB(10)H(10)](-) anion 9. The structures of anions 1, 2a, 2b, 5, 6, 7, 8, 9 and 10 have been established by single-crystal X-ray diffraction analyses of their [NEt(4)](+) salts, and those of neutral 3 and 4 estimated by DFT calculations at the B3LYP/6-31G* level; similar calculations have also been applied to the new anionic closo species 2a, 2b, 5, 6, 7, 9 and 10. Crystals of the [NEt(4)](+) salt of the [2-Ph-closo-2-CB(6)H(6)](-) anion 7 required synchrotron X-radiation for sufficient diffraction intensity for molecular-structure elucidation. The syntheses are in principle generally applicable to give extensive derivative C-aryl and C-alkyl chemistries.  相似文献   

4.
B(10)H(14) reacts with para-C(6)H(4)(CHO)(COOH) in aqueous KOH solution to give the [nido-6-CB(9)H(11)-6-(C(6)H(4)-para-COOH)](-) anion 1, which undergoes cage closure with iodine in alkaline solution to give the [closo-2-CB(9)H(9)-2-(C(6)H(4)-para-COOH)](-) anion 2. Upon heating, anion 2 rearranges to form the [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-COOH)](-) anion 3. Similarly, B(10)H(14) with glyoxylic acid OHCCOOH in aqueous KOH gives the [arachno-6-CB(9)H(13)-6-(COOH)](-) anion 4, which undergoes cage closure with iodine in alkaline solution to give the [closo-2-CB(9)H(9)-2-(COOH)](-) anion 5. Upon heating, anion 5 rearranges to give the [closo-1-CB(9)H(9)-1-(COOH)](-) anion 6. Reduction of the [COOH] anions 3 and 6 with diisobutylaluminium hydride gives the [CH(2)OH] hydroxy anions [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CH(2)OH)](-) and [closo-1-CB(9)H(9)-1-(CH(2)OH)](-) 8 respectively. The [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CH(2)OH)](-) anion 7 can also be made via isomerisation of the [closo-2-CB(9)H(9)-2-(C(6)H(4)-para-CH(2)OH)](-) anion 9, in turn obtained from the [nido-6-CB(9)H(11)-6-(C(6)H(4)-para-CH(2)OH)](-) anion 10, which is obtained from the reaction of B(10)H(14) with terephthaldicarboxaldehyde, C(6)H(4)-para-(CHO)(2), in aqueous KOH solution. Oxidation of the hydroxy anions 7 and 8 with pyridinium dichromate gives the aldehydic [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CHO)](-) anion 11 and the aldehydic [closo-1-CB(9)H(9)-1-(CHO)](-) anion 12 respectively, characterised as their 2,4-dinitrophenylhydrazone derivatives, the [closo-1-CB(9)H(9)-1-C(6)H(4)-para-CH=N-NHC(6)H(3)(NO(2))(2)](-) anion 13 and the [closo-1-CB(9)H(9)-1-CH=N-NHC(6)H(3)(NO(2))(2)](-) anion respectively.  相似文献   

5.
Thermolysis in the solid state of Cs+[arachno-CB9H14]-, or of Cs+[nido-CB9H12]-, or the oxidation of nido-1-CB8H12 with I2 in THF at -78 degrees C in the presence of NEt3, gives the first nine-vertex closo monocarbaborane, the stable [closo-4-CB8H9]- anion, in yields of 56, 61 and 75%, respectively.  相似文献   

6.
A comparative study of the reactivity of dinitrogen acids [closo-1-CB(9)H(8)-1-COOH-10-N(2)] (3[10]) and [closo-1-CB(9)H(8)-1-COOH-6-N(2)] (3[6]) was conducted by diazotization of a mixture of amino acids [closo-1-CB(9)H(8)-1-COOH-6-NH(3)] (1[6]) and [closo-1-CB(9)H(8)-1-COOH-10-NH(3)] (1[10]) with NO(+)BF(4)(-) in the presence of a heterocyclic base (pyridine, 4-methoxypyridine, 2-picoline, or quinoline). The 10-amino acid 1[10] formed an isolable stable 10-dinitrogen acid 3[10], while the 6-dinitrogen carboxylate 3[6](-) reacted in situ, giving products of N-substitution at the B6 position with the heterocyclic solvent (4[6]). The molecular and crystal structures for pyridinium acid 4[6]a were determined by X-ray crystallography. The electronic structures and reactivity of the 6-dinitrogen derivatives of the {1-CB(9)} cluster were assessed computationally at the B3LYP/6-31G(d,p) and MP2/6-31G(d,p) levels of theory and compared to those of the 10-dinitrogen, 2-dinitrogen, and 1-dinitrogen analogues.  相似文献   

7.
Treatment of a solution of excess PCl(3) and PS (PS = "proton sponge" = 1,8-dimethylamino naphthalene) with arachno-4-CB(8)H(14) (1) in CH(2)Cl(2), followed by hydrolysis of the reaction mixture, resulted in the isolation of the eleven-vertex diphosphacarbaborane nido-7,8,9-P(2)CB(8)H(10) (2) (yield 34%) as the main product. Other products isolated from this reaction were the phosphacarboranes nido-7,8,9,10-P(3)CB(7)H(8) (3) (yield 5%) and closo-2,1-PCB(8)H(9) (4) (yield 15%). Compound 2 can be deprotonated by PS in CH(2)Cl(2) or NaH in diethyl ether to give the [nido-7,8,9-P(2)CB(8)H(9)](-) (2(-)()) anion, which gives back the original compound, 2, upon re-protonation. Thermal rearrangement of anion 2(-) (Na(+) salt) at 350 degrees C for 2 h produced the isomeric [nido-7,8,10-P(2)CB(8)H(9)](-) (5(-)()) anion, which was isolated as a PPh(4)(+) salt (yield 86%). Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B] COSY, (1)H{(11)B(selective)}, (1)H{(31)P(selective)}, and gradient-enhanced ([(1)H-(13)C] HSQC) magnetic resonance measurements led to complete assignments of all resonances which are in excellent agreement with the structures proposed. Coupling constants, (1)J((31)P,(13)C), (2)J((31)P,C,(1)H), and (1)J((31)P,(31)P), were calculated using the DFT method B3LYP/6-311+G(d,p). The molecular geometries of all compounds were optimized ab initio at a correlated level of theory (RMP2(fc)) using the 6-31G basis set, and their correctness was assessed by comparison of the experimental (11)B and (13)C chemical shifts with those calculated by the GIAO-SCF/II//RMP2(fc)/6-31G method. The computations also include the structures and chemical shieldings of the still unknown isomers [nido-7,10,8-P(2)CB(8)H(9)](-) (6(-)) and [nido-7,9,8-P(2)CB(8)H(9)](-) (7(-)).  相似文献   

8.
Treatment of the nido-1-CB8H12 (1) carborane with NaBH4 in THF at ambient temperature led to the isolation of the stable [arachno-5-CB8H13]- (2(-)), which was isolated as Na+[5-CB8H13]-.1.5 THF and PPh4 +[5-CB8H13]- in almost quantitative yield. Compound 2(-) underwent a boron-degradation reaction with concentrated hydrochloric acid to afford the arachno-4-CB7H13 (3) carborane in 70 % yield, whereas reaction between 2(-) and excess phenyl acetylene in refluxing THF gave the [closo-2-CB6H7]- (4-) in 66 % yield. Protonation of the Cs+4(-) salt with concentrated H2SO4 or CF3COOH in CH2Cl2 afforded a new, highly volatile 2-CB6H8 (4) carborane in 95 % yield, the deprotonation of which with Et3N in CH2Cl2 leads quantitatively to Et3NH+[2-CB6H7](-) (Et3NH+4(-)). Both compounds 4- and 4 can be deboronated through treatment with concentrated hydrochloric acid in CH2Cl2 to yield the carbahexaborane nido-2-CB5H9 (5) in 60 % yield. New compounds 2-, 3, and 4 were structurally characterised by the ab initio/GIAO/MP2/NMR method. The method gave superior results to those carried out using GIAO-HF when relating the calculated 11B NMR chemical shifts to experimental data.  相似文献   

9.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

10.
The apparent ionization constants pK(a)' for series of carboxylic acids [closo-1-CB(9)H(8)-1-COOH-10-X](-) (1) and [closo-1-CB(11)H(10)-1-COOH-12-X](-) (2), where X = H, I, n-C(6)H(13), (+)NMe(3), (+)N(2), (+)SMe(2), OC(5)H(11), were measured in EtOH/H(2)O (1/1, v/v) at 24 °C. Correlation analysis of the pK(a)' values using Hammett substituent constants σ(p)(X) gave the reaction constant ρ = 0.87 ± 0.04 for series 1 and ρ = 1.00 ± 0.09 for series 2. These values are higher than for derivatives of PhCH═CHCOOH (ρ = 0.70 ± 0.09 in 55% EtOH) and correspond to 56% and 65% efficiencies in transmission of electronic effects by [closo-1-CB(9)H(10)](-) (E) and [closo-1-CB(11)H(12)](-) (F), respectively, as compared to benzene (A). Experimental results were supported with DFT calculations of relative acidity for series of acids derived from A, E, and F in aqueous medium.  相似文献   

11.
The isomer-free [closo-1-CB9H(8)-1-COOH-10-I]- anion was prepared in four steps and 10% overall yield from B10H14. The key step is the skeletal isomerization of the [closo-2-CB9H8-2-COOH-7-I]- anion to a mixture of the 10- and 6-iodo derivatives of [closo-1-CB9H(9)-1-COOH]- formed in up to a 3:1 ratio. The carboxylic acid 4 was converted to the amine [closo-1-CB9H(8)-1-NH(2)-10-I]- using the Curtius reaction. The relative thermodynamic stability of each product was calculated at the DFT and MP2 levels of theory. The regioselectivity of electrophilic substitution in [closo-CB9H10]- derivatives was briefly investigated using the NBO population analysis of the MP2 wave function.  相似文献   

12.
The stirring of [ortho-(HC[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] in benzene affords [6,9-{ortho-(HC[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 1 in 93% yield. In the solid state, 1 has an extended complex three-dimensional structure involving intramolecular dihydrogen bonding, which accounts for its low solubility. Thermolysis of 1 gives the known [1-(ortho-C(5)H(4)N)-1,2-closo-C(2)B(10)H(11)] 2 (13%), together with new [micro-5(N),6(C)-(NC(5)H(4)-ortho-CH(2))-nido-6-CB(9)H(10)] 3 (0.4%), [micro-7(C),8(N)-(NC(5)H(4)-ortho-CH(2))-nido-7-CB(10)H(11)] (0.4%) , 4 binuclear [endo-6'-(closo-1,2-C(2)B(10)H(10))-micro-(1(C),exo-6'(N))-(ortho-C(5)H(4)N)-micro-(exo-8'(C),exo-9'(N))-(ortho-(CH(2)CH(2))-C(5)H(4)N)-arachno-B(10)H(10)] (0.5%) 5, and [exo-6(C)-endo-6(N)-(ortho-(CH[double bond]CH)-C(5)H(4)N)-exo-9(N)-(ortho-(HC[triple bond]C)-C(5)H(4)N)-arachno-B(10)H(11)] 6. An improved solvent-free route to 2 is also presented. This set of compounds features an increasing cluster incorporation of the ethynyl moiety, initially by an effective internal hydroboration, affording an arachno to nido and then a nido to arachno:closo sequence of cluster geometry. An alternative low-temperature route to internal hydroboration is demonstrated in the room temperature reaction of [closo-B(11)H(11)][N(n)Bu(4)](2) with CF(3)COOH and [ortho-(HC[triple bond]C)-C(5)H(4)N], which gives [micro-1(C),2(B)-[ortho-C(5)H(4)N-CH(2)]-closo-1-CB(11)H(10)] 7 (40%) in which one carbon atom is incorporated into the cluster; a similar reaction with [ortho-(N[triple bond]C)-C(5)H(4)N] affords [N(n)Bu(4)][7-(ortho-N[triple bond]C-C(5)H(4)N)-nido-B(11)H(12)], 8 (68%) and stirring [ortho-(N[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] quantitatively affords the cyano analogue of 1, [6,9-{ortho-(N[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 9. All compounds were characterised by single-crystal X-ray diffraction analysis and NMR spectroscopy.  相似文献   

13.
In the presence of a strong base, benzal chloride (C(6)H(5)CHCl(2)) and its p-substituted derivatives react with [nido-B(11)H(14)](-) to yield [closo-1-p-X-C(6)H(4)-CB(11)H(11)](-) (X = H, F, Cl, Br, I, Ph), presumably by insertion of an arylhalocarbene and oxidation. On a 1-g scale, the yields are 30-40%, except in the case of p-iodobenzal chloride, which yields only 12% of the insertion product.  相似文献   

14.
The manganacarborane dianion in [N(PPh(3))(2)][NEt(4)][1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(9)] (1b) reacts with cationic transition metal-ligand fragments to give products in which the electrophilic metal groups (M') are exo-polyhedrally attached to the {closo-1,2-MnCB(9)} cage system via three-center two-electron B-H --> M' linkages and generally also by Mn-M' bonds. With {Cu(PPh(3))}(+), the Cu-Mn-Cu trimetallic species [1,6-{Cu(PPh(3))}-1,7-{Cu(PPh(3))}-6,7-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (3a) is formed, whereas reactions with {M'(dppe)}(2+) (M' = Ni, Pd; dppe = Ph(2)PCH(2)CH(2)PPh(2)) give [1,3-{Ni(dppe)}-3-(mu-H)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(8)] (5a) and [1,3,6-{Pd(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (5b), both of which contain M'-Mn bonds. The latter reaction with M' = Pt affords [3,6-{Pt(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (6), which lacks a Pt-Mn connectivity. Compound 6 itself spontaneously converts to [1-Ph-2,2,2-(CO)(3)-8,8-(dppe)-hypercloso-8,2,1-PtMnCB(9)H(9)] (7b) and thence to [3,6,7-{Mn(CO)(3)}-3,7-(mu-H)(2)-1-Ph-6,6-(dppe)-closo-6,1-PtCB(8)H(6)] (8). This sequence occurs via initial insertion of the {Pt(dppe)} unit and then extrusion of {Mn(CO)(3)} and one {BH} vertex. In the presence of alcohols ROH, compound 6 is transformed to the 7-OR substituted analogues of 7b. X-ray diffraction studies were essential in elucidating the structures encountered in compounds 5-8 and hence in understanding their behavior.  相似文献   

15.
The reaction of the Tl+ salt of the [nido-7,8,9-P2CB8H9]- anion (1-) with [CpFe(CO)2I](Cp =eta(5)-C5H5) in refluxing mesitylene for 12 h gives mixed-sandwich [1-Cp-closo-1,2,3,4-FeP2CB8H9] (2) (yield 63%). Reaction of the PPh4+ salt of the isomeric [nido-7,8,10-P2CB8H9]- anion 3- with [CpFe(CO)2I] in refluxing mesitylene gives [1-Cp-closo-1,2,3,5-FeP2CB8H9]4 (yield 56%), isomeric with 2. Compound 4 also results (yield 92%) from the sublimation of 2 under argon at ca. 350 degrees C. The constitution of all compounds is established by mass spectrometry, IR spectroscopy and multinuclear NMR spectroscopy (1H, 11B, 31P, and 13C; two-dimensional [11B-11B]-COSY, and 1H- 11B(selective)), further confirmed in the case of 4 by a single-crystal X-ray diffraction analysis.  相似文献   

16.
17.
Anions [Me2SB12H11]- (2) and [MeSB12H11]2- (3) can be reduced by excess lithium in methylamine at -15 degrees C to yield [HSB12H11]2- (1) after workup. Such behavior toward this reducing system is similar to that of alkyl aryl sulfides. The sulfone [MeSO2B12H11]2- (12) also yields 1 as a major boron product upon reduction, while alkyl aryl sulfones produce the corresponding arenes under the same conditions. Similarly, isomers of (Me2S)2B12H10 (4-6) are reduced by lithium in methylamine yielding dithiols [(HS)2B12H10]2- (7-9). The tetrabutylammonium salts of 1 and 7-9 are obtained in 80-90% yields and characterized by multinuclear NMR and mass spectrometry, the latter three compounds being isolated and characterized for the first time. The reduction reaction provides access to dithiols 7-9 for biological evaluation and use in synthesis. Thus, 2 and 4-6 can be easily converted to [R2SB12H11]- and (R2S)2B12H10 in a two-step reduction-alkylation procedure. 1,2-(Bn2S)2B12H10 (13) obtained by alkylation of the reduction product of 4 by benzyl chloride was characterized by single-crystal X-ray diffraction analysis. Crystal data for 1,2-(Bn2S)2B12H10.CD3CN: C2/c (No. 15), a = 13.666(1) A, b = 16.978(1) A, c = 14.667(1) A, beta = 91.08(1) degrees, Z = 4.  相似文献   

18.
The microwave-assisted Pd-catalyzed Kumada-type cross-coupling reaction of iodinated carba-closo-dodecaborate anions requires smaller amounts of Grignard reagent and catalyst and results in higher yields in much shorter reaction times in comparison to a reaction with conventional heat transfer. 12-Ph(3)P-closo-1-CB(11)H(11) was identified as the side product of the cross-coupling reactions that use [PdCl(2)(PPh(3))(2)]. The inner salt, which is the first example for a {closo-1-CB(11)} cluster with a B-P bond, was selectively synthesized via a related microwave-assisted cross-coupling protocol and characterized by NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the crystal structures of the tetraethyl ammonium salts of [12-Ph-closo-1-CB(11)H(11)](-), [12-(4-MeOC(6)H(4))-closo-1-CB(11)H(11)](-), and [12-(H(2)C═(Me)CC≡C)-closo-1-CB(11)H(11)](-) are described.  相似文献   

19.
In anhydrous hydrogen fluoride, K[1-H2N-CB11H11] is fluorinated with elemental fluorine to produce K[1-H2N-CB11F11]. Under strong alkaline conditions, two fluorine atoms of the [1-H2N-CB11F11]- anion are regioselectively exchanged, yielding the [1-H2N-4,6-(HO)2-CB11F9]- anion via [1-H2N-6-HO-CB11F10]- as an intermediate. Both hydroxycarborate anions were isolated as [Ph4P]+ salts. All of the species were characterized by IR, Raman, and multi-NMR spectroscopy, thermal analysis (DSC) as well as by mass spectrometry (MALDI). The assignment of the NMR signals was supported by DFT calculations. Solid-state structures of K[1-H2N-CB11F11], [BzPh3P][1-H2N-CB11F11], [Ph4P][1-H2N-4,6-(HO)2-CB11F9], [Ph4P][1-H2N-6-HO-CB11F10], and [BzPh3P][1-H2N-CB11H11] were determined by single-crystal X-ray diffraction.  相似文献   

20.
The reaction between arachno-4-CB(8)H(14) and PCl(3) in the presence of PS (PS = proton sponge = 1,8-dimethylamino naphthalene) (dichloromethane, rt, 24 h) produced the neutral phosphacarborane closo-2,1-PCB(8)H(9) (35% yield), while a similar reaction of nido-1-CB(8)H(12) gave the isomeric compound closo-6,1-PCB(8)H(9) (27% yield). The structures of both compounds were derived on the basis of the combined ab initio/GIAO/NMR ((1)H, (11)B, (13)C) approach. The optimized structures at a correlated level of theory (MP2) with 6-31G* basis set were used as a basis for calculations of the (11)B and (13)C chemical shifts at GIAO-SCF/II and GIAO-MP2/II, the latter showing excellent agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号