首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The simple combination of PdII with the tris‐monodentate ligand bis(pyridin‐3‐ylmethyl) pyridine‐3,5‐dicarboxylate, L , at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the “spiro‐type” Pd1L2 macrocycle, 1 , and the quadruple‐stranded Pd3L4 cage, 2 , respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.  相似文献   

2.
3.
4.
5.
This article describes the reaction of amino resins with functional molecules using the azide/alkyne‐“click”‐reaction, opening a simple chemical modification of amino resins under aqueous conditions. Alkyne‐modified melamine‐formaldehyde resins are prepared via a direct cocondensation approach using propargylic alcohol (21.6–86.3 mmol) as additive. Subsequently, alkyne‐modified mono‐, bi‐, and trinuclear melamine‐species are identified via LC‐ESI‐TOF methods proving the covalent incorporation of alkyne‐moieties in amounts of up to 3.9 mol %. Subsequent modification of the alkyne‐modified resins was accomplished by reaction of functional azides (octyl azide (1), (azidomethyl)benzene (2), 1‐(6‐azidohexyl) thymine (3), and 4‐azido‐N‐(2,2,6,6‐tetramethylpiperidin‐4‐yl)benzamide (4)) with Cu(I)Br and DIPEA as a base. The formation of triazolyl‐modified MF‐resins was proven by LC‐ESI‐TOF methods, indicating the successful covalent modification of the amino resin with the azides 1 – 4 . © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
7.
8.
9.
10.
11.
12.
The temperature‐responsive poly (N, N‐diethylacrylamide) (pDEAAm) with narrower molecular weight distribution was prepared by the atom transfer radical polymerization and characterized by 1HNMR and gel permeation chromatography. The temperature‐responsive “tadpole‐shaped” BSA–pDEAAm hybrids were fabricated via a free Cys‐34 residue of bovine serum albumin (BSA) site specifically binding to the end group disulfide bonds of pDEAAm and characterized by native‐polyacrylamide gel electrophoresis (Native‐PAGE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Their temperature‐responsive behaviors were measured by ultraviolet‐visible spectra (UV‐Vis). The lower critical solution temperature (LCST) of the pDEAAm was identified as 28°C, and the LCST of BSA–pDEAAm hybrids was identified as 31°C. The morphologies of BSA–pDEAAm hybrids self‐assembled in the aqueous solutions with two different temperatures at 25 °C and 40°C were investigated by transmission electron microscopy. Below the LCST of BSA–pDEAAm hybrids, the separate spherical nanoparticles were observed. In contrast, bundles and clusters were observed above the LCST of BSA–pDEAAm hybrids. The results suggested that the self‐assembly morphology of BSA–pDEAAm hybrids depended upon the pDEAAm block in BSA–pDEAAm hybrids, and the morphology transitions were effected by the LCST of BSA–pDEAAm hybrids. It would be expected to be used in biomedicine and materials science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
Summary: Biodegradable poly(1,5‐dioxepan‐2‐one) (PDXO) was grown directly from Si OH groups of a silica nanoparticle by surface‐initiated, ring‐opening polymerization (SI‐ROP) of 1,5‐dioxepan‐2‐one (DXO). The direct SI‐ROP of DXO was achieved by heating a mixture of Sn(Oct)2, DXO, and the silica nanoparticles (316 nm in diameter) in anhydrous toluene. The resulting silica/PDXO hybrid nanoparticles were characterized by means of 1H NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and field‐emission scanning electron microscopy.

The procedure for the surface‐initiated, ring‐opening polymerization of 1,5‐dioxepan‐2‐one on silica nanoparticles reported here.  相似文献   


16.
17.
18.
19.
Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano‐ and microscaled fillers, or via new chemical concepts such as self‐healing materials. A capsule‐based self‐healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene‐based filler, the latter additionally acting as a catalyst for the self‐healing reaction. The concept is based on “click”‐based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a “reactive glue” at the cracked site. A capsule‐based healing system via a graphene‐based Cu2O (TRGO‐Cu2O‐filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room‐temperature self‐healing within 48 h is achieved, with the investigated specimen containing TRGO‐Cu2O demonstrating significantly faster self‐healing compared to homogeneous (Cu(PPh3)3F, Cu(PPh3)3Br), and heterogeneous (Cu/C) copper(I) catalysts.

  相似文献   


20.
Olefin cross‐metathesis is introduced as a versatile polymer side‐chain modification technique. The reaction of a poly(2‐oxazoline) featuring terminal double bonds in the side chains with a variety of functional acrylates has been successfully performed in the presence of Hoveyda–Grubbs second‐generation catalyst. Self‐metathesis, which would lead to polymer–polymer coupling, can be avoided by using an excess of the cross‐metathesis partner and a catalyst loading of 5 mol%. The results suggest that bulky acrylates reduce chain–chain coupling due to self‐metathesis. Moreover, different functional groups such as alkyl chains, hydroxyl, and allyl acetate groups, as well as an oligomeric poly(ethylene glycol) and a perfluorinated alkyl chain have been grafted with quantitative conversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号