首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The present work investigated the enzymolysis kinetics, thermodynamics and model of porcine cerebral protein (PCP) which was pretreated by single-frequency countercurrent and pulsed ultrasound. The kinetic constants for ultrasonic pretreated and traditional enzymolysis have been determined. Results showed that the value of KM in ultrasonic PCP (UPCP) enzymolysis decreased by 9% over that in the traditional enzymolysis. The values of reaction rate constant (k) for UPCP enzymolysis increased by 207%, 121%, 62%, and 45% at 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased activation energy (Ea), change in enthalpy (ΔH) and entropy (ΔS) by 76%, 82% and 31% in PCP, respectively. However, ultrasound had little change in Gibbs free energy (ΔG) value in the temperature range of 293–323 K. Therefore, a general kinetic equation for the enzymolysis model of UPCP by a simple empirical equation was suggested. The experimental values fits with the enzymolysis kinetic model with a low average relative error (4%) confirmed that the kinetic model was accurate to reflect the enzymolysis process. The positive effect of single-frequency countercurrent and pulsed ultrasound in this study and application of the kinetic model may be useful for the release of bioactive peptides from meat processing by-products.  相似文献   

2.
This research explores the mechanism of ultrasonic pretreatment on enzymolysis of defatted wheat germ protein (DWGP). The enzymolysis reaction kinetics and thermodynamics were studied after ultrasonic pretreatments using a probe-type sonicator and an ultrasonic cleaning bath, and the results were compared with traditional enzymolysis. The results showed that both the traditional and ultrasonic pretreated enzymolysis fit well to first-order kinetics. Both the temperature and ultrasound had a positive effect on the enzymolysis of DWGP, with temperature playing a dominant role. Under the optimized conditions of DWGP concentration of 1% (w/v), Alcalase concentration of 2000 U/g, time of 10 min and temperature of 50 °C, both the probe and cleaning bath ultrasonic pretreated enzymolysis showed high polypeptide concentrations (231.019 and 231.320 μg/mL) and low energy requirements. In comparison with traditional enzymolysis, these methods significantly increased the reaction rate constant (k) by 166.7% and 144.4%, 92.9% and 85.7%, 28.0% and 28.0%, 16.1% and 12.9% at 20, 30, 40 and 50 °C, and decreased the activation energy (Ea), enthalpy of activation (ΔH), Gibbs free energy of activation (ΔG) and entropy of activation (ΔS) by 68.6% and 62.4%, 74.1% and 67.5%, 34.3% and 31.2%, 1.4% and 1.3%. It can be concluded that ultrasonic pretreatment of DWGP can remarkably improve the enzymolysis efficiency and consequently leads to the production of higher polypeptide yield.  相似文献   

3.
The thermodynamics and kinetics of traditional and simultaneous dual frequency energy-gathered ultrasound (SDFU) assisted enzymolysis of potato protein were investigated to get the knowledge of the mechanisms on the SDFU’s promoting efficiency during enzymolysis. The concentration of potato protein hydrolysate and parameters of thermodynamic and kinetic during traditional and SDFU assisted enzymolysis were determined. The results showed that potato protein hydrolysate concentration of SDFU assisted enzymolysis was higher than traditional enzymolysis at the hydrolysis time of 60 min (p < 0.05) whereas not significantly different at 120 min (p > 0.05). In some cases, SDFU assisted enzymolysis took less hydrolysis time than traditional enzymolysis when the similar conversion rates of potato protein were obtained. The thermodynamic papameters including the energy of activation (Ea), enthalpy of activation (△H), entropy of activation (△S) were reduced by ultrasound pretreatment while Gibbs free energy of activation (△G) increased little (1.6%). Also, kinetic papameters including Michaelis constant (KM) and catalytic rate constant (kcat) decreased by ultrasound pretreatment. On the contrary, reaction rate constants (k) of SDFU assisted enzymolysis were higher than that of traditional enzymolysis (p < 0.05). It was indicated that the efficiency of SDFU assisted enzymolysis was higher than traditional enzymolysis in a limited time. The higher efficiency of SDFU assisted enzymolysis was related with the decrease of Ea and KM by lowering the energy barrier between ground and active state and increasing affinity between substrate and enzyme.  相似文献   

4.
The aim of this study was to investigate the effect of multi-frequency power ultrasound (sweeping frequency and pulsed ultrasound (SFPU) and sequential dual frequency ultrasound (SDFU)) on the enzymolysis of corn gluten meal (CGM) and on the structures of the major protein fractions (zein, glutelin) of CGM. The results showed that multi-frequency power ultrasound pretreatments improved significantly (P < 0.05) the degree of hydrolysis and conversion rate of CGM. The changes in UV–Vis spectra, fluorescence emission spectra, surface hydrophobicity (H0), and the content of SH and SS groups indicated unfolding of zein and glutelin by ultrasound. The circular dichroism analysis showed that both pretreatments decreased α-helix and increased β-sheet of glutelin. The SFPU pretreatment had little impact on the secondary structure of zein, while the SDFU increased the α-helix and decreased the β-sheet remarkably. Scanning electron microscope indicated that both pretreatments destroyed the microstructures of glutelin and CGM, reduced the particle size of zein despite that the SDFU induced aggregation was observed. In conclusion, multi-frequency power ultrasound pretreatment is an efficient method in protein proteolysis due to its sonochemistry effect on the molecular conformation as well as on the microstructure of protein.  相似文献   

5.
The present work investigates the effectiveness of application of low intensity ultrasonic irradiation for the intensification of enzymatic depolymerization of aqueous guar gum solution. The extent of depolymerization of guar gum has been analyzed in terms of intrinsic viscosity reduction. The effect of ultrasonic irradiation on the kinetic and thermodynamic parameters related to the enzyme activity as well as the intrinsic viscosity reduction of guar gum using enzymatic approach has been evaluated. The kinetic rate constant has been found to increase with an increase in the temperature and cellulase loading. It has been observed that application of ultrasound not only enhances the extent of depolymerization but also reduces the time of depolymerization as compared to conventional enzymatic degradation technique. In the presence of cellulase enzyme, the maximum extent of depolymerization of guar gum has been observed at 60 W of ultrasonic rated power and ultrasonic treatment time of 30 min. The effect of ultrasound on the kinetic and thermodynamic parameters as well as the molecular structure of cellulase enzyme was evaluated with the help of the chemical reaction kinetics model and fluorescence spectroscopy. Application of ultrasound resulted in a reduction in the thermodynamic parameters of activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) by 47%, 50%, 65% and 1.97%, respectively. The changes in the chemical structure of guar gum treated using ultrasound assisted enzymatic approach in comparison to the native guar gum were also characterized by FTIR. The results revealed that enzymatic depolymerization of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency index without any change in the core chemical structure which could make it useful for incorporation in food products.  相似文献   

6.
In this paper, the kinetics of polyphenols extraction from spruce bark (Picea abies) under ultrasounds action was investigated. Studies were performed in order to express the effect of some specific parameters (as: ultrasounds, surface contact between solvent and solid, extraction time and temperature) on the total phenolic content (TPC). Experiments were performed in the presence and absence of ultrasounds, using different contact surfaces between solvent and solid, for times from 5 to 75 min and temperatures of 318, 323 and 333 K. All these factors have a positive influence on the process, enhancing the extraction rate by recovering higher amounts of polyphenols. The process takes place in two stages: a fast one in the first 20–30 min (first stage), followed by a slow one approaching to an equilibrium concentration after 40 min (second stage). In these conditions, the second-order kinetic model was successfully developed for describing the mechanism of ultrasound-assisted extraction of polyphenols from P. abies bark. Based on this model, values of second-order extraction rate constant (k), initial extraction rate (h), saturation concentration (Cs) and activation energy (Ea) could be predicted. Model validation was done by plotting experimental and predicted values of TPC’s, revealing a very good correlation between the obtained data (R2 > 0.98).  相似文献   

7.
The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2–117.6 W/L for 5–15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product.  相似文献   

8.
The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200–1000 Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young’s modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well.  相似文献   

9.
The aim of the study was to investigate the impact of sodium alginate (ALG) pretreated by ultrasound on the enzyme activity, structure, conformation and molecular weight and distribution of papain. ALG solutions were pretreated with ultrasound at varying power (0.05, 0.15, 0.25, 0.35, 0.45 W/cm2), 135 kHz, 50 °C for 20 min. The maximum relative activity of papain increased by 10.53% when mixed with ALG pretreated by ultrasound at 0.25 W/cm2, compared with the untreated ALG. The influence of ultrasound pretreated ALG on the conformation and secondary structure of papain were assessed by fluorescence spectroscopy and circular dichroism spectroscopy. The fluorescence spectra revealed that ultrasound pretreated ALG increased the number of tryptophan on papain surface, especially at 0.25 W/cm2. It indicated that ultrasound pretreatment induced molecular unfolding, causing the exposure of more hydrophobic groups and regions from inside to the outside of the papain molecules. Furthermore, ultrasound pretreated ALG resulted in minor changes in the secondary structure of the papain. The content of α-helix was slightly increased after ultrasound pretreatment and no significant change was observed at different ultrasound powers. ALG pretreated by ultrasound enhanced the stability of the secondary structure of papain, especially at 0.25 W/cm2. The free sulfhydryl (SH) content of papain was slightly increased and then decreased with the increase of ultrasonic power. The maximum content of free SH was observed at 0.25 W/cm2, under which the content of the free SH increased by 6.36% compared with the untreated ALG. Dynamic light scattering showed that the effect of ultrasound treatment was mainly the homogenization of the ALG particles in the mixed dispersion. The gel permeation chromatography coupled with the multi-angle laser light scattering photometer analysis showed that the molecular weight (Mw) of papain/ALG was decreased and then increased with the ultrasonic pretreatment. Results demonstrated that the activity of immobilized papain improved by ultrasonic pretreatment was mainly caused by the variation of the conformation of papain and the effect of interactions between papain and ALG. This study is important to explain the intermolecular interactions of biopolymers and the mechanism of enzyme immobilization treated by ultrasound in improving the enzymatic activity. As expected, ALG pretreated by appropriate ultrasound is promising as a bioactive compound carrier in the field of immobilized enzyme.  相似文献   

10.
Calorimetric studies of amorphous Se75S25−xAgx (x = 2, 4, 6 and 8) chalcogenide glasses are made at different heating rates (5, 10, 15 and 20 K/min) under non-isothermal condition using Differential scanning calorimetry. The values of glass transition temperature and crystallization temperature are observed to be composition and heating rate dependence. From the heating rate dependence of glass transition temperature and crystallization temperature, the activation energy for structural relaxation (ΔEt), the activation energy of crystallization (ΔEc) and the order parameter (n) have been calculated. It is observed that Se75S19Ag6 has a minimum value of activation energy for structural relaxation (ΔEt), which indicates that this particular glass has a larger probability to jump to a state of lower configurational energy and higher stability in the glassy region. On the basis of the obtained experimental data the temperature difference (Tc  Tg) is found to be maximum for Se75S19Ag6, which further indicate that this glass is the thermally most stable in the entire composition range of investigation.  相似文献   

11.
This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75 °C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography–mass spectrometry (GC–MS) analysis.  相似文献   

12.
In this paper an unconditionally stable, spatially and temporally implicit time-domain discretization for nonuniform magnetized cold plasma is developed. The discrete dispersion relation is free of spurious solutions and approximates the continuous dispersion relation for well-resolved wavelengths and frequencies (kΔ ? π, ωΔt ? π). For a specific choice of parameters, the discrete dispersion relation approximates the continuous dispersion relation for all wavelengths and frequencies up to the Nyquist limit. A few examples, amongst them one involving mode conversion, illustrate the new method.  相似文献   

13.
By employing numerical solutions of the Poisson–Boltzmann equation we have studied the interface capacitance of flat electrodes with stripes of different potentials of zero charge ?pzc. The results depend on the ratio of the width of the stripes l to the dielectric screening length in the electrolyte, the Debye length dDebye, as well as on the difference Δ?pzc in relation kBT/e. As expected, the capacitance of a striped surface has its minimum at the mean potential of the surface if l/dDebye << 1 and displays two minima if l/dDebye >> 1. An unexpected result is that for Δ?pzc ? 0.2V, the transition between the two extreme cases does not occur when l ? dDebye, but rather when l > 10dDebye. As a consequence, a single minimum in the capacitance is observed for dilute electrolytes even for 100 nm wide stripes. The capacitance at the minimum is however higher than for homogeneous surfaces. Furthermore, the potential at the minimum deviates significantly from the potential of zero mean charge on the surface if l > 3dDebye and Δ?pzc is larger than about 4kBT/e. The capacitance of stepped, partially reconstructed Au(11n) surfaces is discussed as an example. Consequences for Parsons–Zobel-plots of the capacitances of inhomogeneous surfaces are likewise discussed.  相似文献   

14.
Present work deals with the ultrasound-assisted biodiesel production from low cost, substantial acid value kusum (Schleichera triguga) oil using a two-step method of esterification in presence of acid (H2SO4) catalyst followed by transesterification using a basic heterogeneous barium hydroxide (Ba(OH)2) catalyst. The initial acid value of kusum oil was reduced from 21.65 to 0.84 mg of KOH/g of oil, by acid catalyzed esterification with 4:1 methanol to oil molar ratio, catalyst concentration 1% (v/v), ultrasonic irradiation time 20 min at 40 °C. Then, Ba(OH)2 concentration of 3% (w/w), methanol to oil molar ratio of 9:1, ultrasonic irradiation time of 80 min, and temperature of 50 °C was found to be the optimum conditions for transesterification step and triglyceride conversion of 96.8% (wt) was achieved. This paper also examined the kinetics as well as the evaluation of thermodynamic parameters for both esterification and transesterification reactions. The lower value of activation energy and higher values of kinetic constants indicated a fast rate of reaction, which could be attributed to the physical effect of emulsification, in which the microturbulence generated due to radial motion of bubbles, creates an intimate mixing of the immiscible reactants causing the increase in the interfacial area, giving faster reaction kinetics. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that both the esterification and transesterification were non-spontaneous, endothermic and endergonic reactions. Therefore, the present work has not only established the escalation obtained due to ultrasonication but also exemplified the two-step approach for synthesis of biodiesel from non-edible kusum oil based on the use of heterogeneous catalyst for the transesterification step.  相似文献   

15.
A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1?xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection spectroscopy experiments performed on LaFeAsO1?xFx (La-1111) polycrystals with Tc  27 K and SmFeAsO0.8F0.2 (Sm-1111) polycrystals with Tc  53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias voltages, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder–Tinkham–Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1?xFx (Re = La, Sm): a small gap, Δ1, smaller than the BCS value (2Δ1/kBTc  2.2–3.2) and a much larger gap Δ2 which gives a ratio 2Δ2/kBTc  6.5–9.0. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc.The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive in the normal state up to T1  140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.  相似文献   

16.
The superconducting gap in FeAs-based superconductor SmFeAs(O1?xFx) (x = 0.15 and 0.30) and the temperature dependence of the sample with x = 0.15 have been measured by Andreev reflection spectroscopy. The intrinsic superconducting gap is independent of contacts while many other “gap-like” features vary appreciably for different contacts. The determined gap value of 2Δ = 13.34 ± 0.47 meV for SmFeAs(O0.85F0.15) gives 2Δ/kBTC = 3.68, close to the BCS prediction of 3.53. The superconducting gap decreases with temperature and vanishes at TC, in a manner similar to the BCS behavior but dramatically different from that of the nodal pseudogap behavior in cuprate superconductors.  相似文献   

17.
In our current research work, the effect of combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) on the enzymatic activity and enzymatic hydrolysis kinetic parameters of dextran catalytic by dextranase were investigated. Furthermore, the effects of US/HHP on the structure of dextranase were also discussed with the aid of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The maximum hydrolysis of dextran was observed under US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 25 min), in which the hydrolysis of dextran increased by 163.79% compared with the routine thermal incubation at 50 °C. Results also showed that, Vmax and KM values, as well as, kcat of dextranase under US/HHP treatment were higher than that under US, HHP and thermal incubation at 50 °C, indicated that, the substrate is converted into the product at an increased rate when compared with the incubation at 50 °C. Compared to the enzymatic reaction under US, HHP, and routine thermal incubation, dextranase enzymatic reaction under US/HHP treatment showed decreases in Ea, ΔG and ΔH, however small increase in ΔS value was observed. In addition, fluorescence and CD spectra reflected that US/HHP treatment had increased the number of tryptophan on dextranase surface with increased α-helix by 19.80% and reduced random coil by 6.94% upon US/HHP-treated dextranase protein compared to the control, which were helpful for the improvement of its activity. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the hydrolysis of dextran in many industrial applications including sugar manufacturing processes.  相似文献   

18.
The (12 × 12) and (14 × 14) valence band anticrossing (V-BAC) models were applied to calculate the electronic band structure of GaAs1xBix dilute alloys along Δ-, Λ- and Σ-directions at room temperature. A comparative study based on these models was performed in terms of energy levels, optical transitions, spin–orbit splitting and effective mass. We found a significant reduction of the band-gap energy Eg by roughly 81 meV/%Bi accompanied by an increase in the spin–orbit splitting Δso+ by about 56 meV/%Bi. Furthermore, Δso+ does come into resonance with Eg at ∼12%Bi for resonance energy equal to 0.73 eV. An excellent agreement has occurred between the (14 × 14) V-BAC model predictions and experimental results reported in the literature. In addition, we have investigated the Bi composition and k-directions dependence of the effective mass at Γ point. A slight increase of the holes effective mass with x can affect the holes transport properties of GaAsBi. The intrinsic carrier density increases with both x and the temperature T, but it remains below 1010 cm−3 for x  5% and T  300 K.  相似文献   

19.
Wheat Dried distiller’s grain (DDG), a coproduct from the ethanol production process, is rich in potentially health-promoting phenolic compounds. In the extraction of phenolic compounds from DDG, the DDG cell wall is an important barrier for mass transfer from the inside to the outside of the cell. The effect of high-power ultrasound pretreatment on destruction of DDG cell walls and extraction yield and rate was investigated. Direct sonication by an ultrasound probe horn at 24 kHz was applied and factors such as ultrasound power and treatment time were investigated. The method of nitrogen (N2) adsorption at 77 K was used as a means to determine and compare the changes in physical properties (specific surface area, pore volume and pore size) of the treated samples at different levels of ultrasound power and treatment time. Increasing specific surface area, pore volume and pore size caused by ultrasonic treatment implied development of new or larger pores and damaged cell walls. Also, it was observed that the ultrasound pretreatment of DDG particles increased the extraction yield and rate of phenolic compounds from DDG by 14.29%. Among tested ultrasound conditions, 100% ultrasound power for 30 s was evaluated as the best pretreatment condition.  相似文献   

20.
The effects of ultrasound pretreatment with different frequencies and working modes, including mono-frequency ultrasound (MFU), dual-frequency ultrasound (DFU) and tri-frequency ultrasound (TFU), on the degree of hydrolysis (DH) of rice protein (RP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of RP hydrolysate were investigated. Ultraviolet–visible (UV) spectroscopy, fourier transform infrared (FTIR) spectroscopy, surface hydrophobicity and scanning electron microscopy (SEM) of RP pretreated with ultrasound were measured. The results showed that ultrasound pretreatment did not increase DH of RP significantly (p > 0.05). However, all the ultrasound pretreatment increased the ACE inhibitory activity of RP hydrolysate significantly (p < 0.05). The MFU of 20 kHz showed higher ACE inhibitory activity compared to that of other MFU. The ACE inhibitory activity of sequential DFU was higher than that of simultaneous with the same frequency combination. Sequential TFU of 20/35/50 kHz produced the highest increase in ACE inhibitory activity in contrast with other ultrasound frequencies and working modes. All the results under ultrasound pretreatment showed that ultrasound frequencies and working modes were of great effect on the ACE inhibitory activity of RP. The changes in UV–Vis spectra and surface hydrophobicity indicated the unfolding of protein and exposure of hydrophobic groups by ultrasound. The FTIR analysis showed that all the ultrasound pretreatment with different frequencies and working modes decreased α-helix, β-turn content and increased β-sheet, random coil content of RP. The SEM results indicated that ultrasound pretreatment resulted in the deformation of RP. In conclusion, the frequency selection of ultrasound pretreatment of RP is essential for the preparation of ACE inhibitory peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号