首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gem‐dimethyl groups in polyketide‐derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem‐dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem‐dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem‐dimethyl group producing PKS modules. Experiments showed that both PKSs are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module 8, use of dimethylmalonyl‐ACP appeared to be the sole route to form a gem‐dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.  相似文献   

2.
Yi Tang 《Tetrahedron》2004,60(35):7659-7671
Polycyclic aromatic polyketides such as actinorhodin and tetracenomycin are synthesized from acetate equivalents by type II polyketide synthases (PKS). Their carbon chain backbones are derived from malonyl-CoA building blocks through the action of a minimal PKS module consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and a malonyl-CoA/ACP transacylase. In contrast to these acetogenic polyketides, the backbones of a few aromatic polyketide natural products, such as the R1128 antibiotics, are primed by non-acetate building blocks. These polyketides are synthesized by bimodular PKSs comprising of a dedicated initiation module, which includes a ketosynthase, acyl transferase and ACP, as well as a minimal PKS module. Recently we showed that regioselectively modified polyketides could be synthesized through the genetic recombination of initiation modules and minimal PKS modules from different polyketide biosynthetic pathways (Tang et al. PLoS Biol. 2004, 2, 227-238). For example, the actinorhodin and tetracenomycin minimal PKSs could accept and elongate unnatural primer units from the R1128 initiation module. In this report we provide further examples of using heterologous bimodular PKSs for the engineered biosynthesis of new aromatic polyketides. In addition to providing insights into the biosynthetic mechanisms of aromatic PKSs, our findings also highlight considerable potential for crosstalk between amino acid catabolism and aromatic polyketide biosynthesis. For example, exogenously supplied unnatural amino acids are efficiently incorporated into bioactive anthraquinone antibiotics.  相似文献   

3.
In fungal non‐reducing polyketide synthases (NR‐PKS) the acyl‐carrier protein (ACP) carries the growing polyketide intermediate through iterative rounds of elongation, cyclization and product release. This process occurs through a controlled, yet enigmatic coordination of the ACP with its partner enzymes. The transient nature of ACP interactions with these catalytic domains imposes a major obstacle for investigation of the influence of protein–protein interactions on polyketide product outcome. To further our understanding about how the ACP interacts with the product template (PT) domain that catalyzes polyketide cyclization, we developed the first mechanism‐based crosslinkers for NR‐PKSs. Through in vitro assays, in silico docking and bioinformatics, ACP residues involved in ACP–PT recognition were identified. We used this information to improve ACP compatibility with non‐cognate PT domains, which resulted in the first gain‐of‐function ACP with improved interactions with its partner enzymes. This advance will aid in future combinatorial biosynthesis of new polyketides.  相似文献   

4.
Chlorothricin ( CHL ), an archetypal member of the family of spirotetronate antibiotics, possesses a tetronate‐containing pentacyclic aglycone that is conjugated with a modified methylsalicyclic acid ( MSA ) moiety through a disaccharide linkage. MSA is a polyketide product assembled by the iterative type I polyketide synthase ChlB1. Incorporation of this pharmaceutically important moiety into CHL relies on the activities of two distinct β‐Ketoacyl‐ACP synthase III (KAS III)‐like acyltransferases, ChlB3 and ChlB6, which function together to coordinate the transfer of MSA through ChlB2, a discrete acyl carrier protein (ACP). During the maturation of CHL , MSA needs to be further functionalized by C2‐O‐methylation and C5‐chlorination; however, timing of this functionalization process remains poorly understood. In this study, we report comparative kinetic assays of the activities of the two KAS III‐like acyltransferases ChlB3 and ChlB6 using substrates that vary in substitution extent and ACP carrier. ChlB3 prefers to transfer the immediately assembled 6‐methyl‐MSA moiety from ChlB1‐ACP to the discrete ACP ChlB2, from which this moiety is preferred to be transferred directly onto the molecule desmethylsalicyl‐CHL prior to C2‐O‐methylation and C5‐chlorination. Consequently, MSA functionalization appears to occur at the molecule level rather than at the covalently tethered protein level, i.e., ChlB1‐ACP or ChlB2. Both ChlB3 and ChlB6 are flexible in substrate tolerance, holding promise for CHL engineering‐based structural diversity by using variable MSA moiety.  相似文献   

5.
Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA−A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.  相似文献   

6.
A novel 19F NMR‐based method for monitoring the enzymatic oxidation of thia fatty acid analogues is presented. Our approach is based on the observation that methyl ω‐monofluorinated 9‐thia‐ and 10‐thiaoctadecanoates and their S‐oxide and S‐dioxide derivatives are easily distinguishable via their 1H‐decoupled 19F spectra. These long‐range substituent effects were used to probe the regio‐ and chemoselectivity of stearoyl ACP (acyl carrier protein) Δ9 desaturase‐mediated sulfoxidation. The results clearly demonstrate that mono‐oxygenation of a 10‐thia analogue ACP Δ9 desaturase was more efficient than that of a 9‐thia substrate. A product previously undetected by TLC was observed for the first time in the product mixture obtained from 18‐fluoro‐9‐thiaoctadecanoyl‐ACP. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Thiomarinol and mupirocin are assembled on similar polyketide/fatty acid backbones and exhibit potent antibiotic activity against methicillin‐resistant Staphylococcus aureus (MRSA). They both contain a tetrasubstituted tetrahydropyran (THP) ring that is essential for biological activity. Mupirocin is a mixture of pseudomonic acids (PAs). Isolation of the novel compound mupirocin P, which contains a 7‐hydroxy‐6‐keto‐substituted THP, from a ΔmupP strain and chemical complementation experiments confirm that the first step in the conversion of PA‐B into the major product PA‐A is oxidation at the C6 position. In addition, nine novel thiomarinol (TM) derivatives with different oxidation patterns decorating the central THP core were isolated after gene deletion (tmlF ). These metabolites are in accord with the THP ring formation and elaboration in thiomarinol following a similar order to that found in mupirocin biosynthesis, despite the lack of some of the equivalent genes. Novel mupirocin–thiomarinol hybrids were also synthesized by mutasynthesis.  相似文献   

8.
Enzymatic core components from trans‐acyltransferase polyketide synthases (trans‐AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans‐AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N‐acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)‐tethered intermediates, we show that the enzyme inserts oxygen into β‐ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non‐hydrolyzed oocydin congener with retained ester moiety, we propose a unified biosynthetic pathway of oocydins, haterumalides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.  相似文献   

9.
Fungal polyketides have significant biological activities, yet the biosynthesis by highly reducing polyketide synthases (HRPKSs) remains enigmatic. An uncharacterized group of HRPKSs was found to contain a C‐terminal domain with significant homology to carnitine O ‐acyltransferase (cAT). Characterization of one such HRPKS (Tv6‐931) from Trichoderma virens showed that the cAT domain is capable of esterifying the polyketide product with polyalcohol nucleophiles. This process is readily reversible, as confirmed through the holo ACP‐dependent transesterification of the released product. The methyltransferase (MT) domain of Tv6‐931 can perform two consecutive α‐methylation steps on the last β‐keto intermediate to yield an α,α‐gem ‐dimethyl product, a new programing feature among HRPKSs. Recapturing of the released product by cAT domain is suggested to facilitate complete gem ‐dimethylation by the MT.  相似文献   

10.
The unusual nitro‐substituted polyketides aureothin, neoaureothin (spectinabilin), and luteoreticulin, which are produced by diverse Streptomyces species, point to a joint evolution. Through rational genetic recombination and domain exchanges we have successfully reprogrammed the modular (type I) aur polyketide synthase (PKS) into a synthase that generates luteoreticulin. This is the first rational transformation of a modular PKS to produce a complex polyketide that was initially isolated from a different bacterium. A unique aspect of this synthetic biology approach is that we exclusively used genes from a single biosynthesis gene cluster to design the artificial pathway, an avenue that likely emulates natural evolutionary processes. Furthermore, an unexpected, context‐dependent switch in the regiospecificity of a pyrone methyl transferase was observed. We also describe an unprecedented scenario where an AT domain iteratively loads an extender unit onto the cognate ACP and the downstream ACP. This aberrant function is a novel case of non‐colinear behavior of PKS domains.  相似文献   

11.
Antifungal HSAF (heat‐stable antifungal factor, dihydromaltophilin) is a polycyclic tetramate macrolactam from the biocontrol agent Lysobacter enzymogenes. Its biosynthetic gene cluster contains only a single‐module polyketide synthase–nonribosomal peptide synthetase (PKS‐NRPS), although two separate hexaketide chains are required to assemble the skeleton. To address the unusual biosynthetic mechanism, we expressed the biosynthetic genes in two “clean” strains of Streptomyces and showed the production of HSAF analogues and a polyene tetramate intermediate. We then expressed the PKS module in Escherichia coli and purified the enzyme. Upon incubation of the enzyme with acyl‐coenzyme A and reduced nicotinamide adenine dinucleotide phosphate (NADPH), a polyene was detected in the tryptic acyl carrier protein (ACP). Finally, we incubated the polyene–PKS with the NRPS module in the presence of ornithine and adenosine triphosphate (ATP), and we detected the same polyene tetramate as that in Streptomyces transformed with the PKS‐NRPS alone. Together, our results provide evidence for an unusual iterative biosynthetic mechanism for bacterial polyketide–peptide natural products.  相似文献   

12.
The organocatalytic properties of unnatural α‐amino acids are reviewed. Post‐translational derivatives of natural α‐amino acids include 4‐hydroxy‐l ‐proline and 4‐amino‐l ‐proline scaffolds, and also proline homologues. The activity of synthetic unnatural α‐amino acid‐based organocatalysts, such as β‐alkyl alanines, alanine‐based phosphines, and tert‐leucine derivatives, are reviewed herein. The organocatalytic properties of unnatural monocyclic, bicyclic, and tricyclic proline derivatives are also reviewed. Several families of these organocatalysts permit the efficient and stereoselective synthesis of complex natural products. Most of the reviewed organocatalysts accelerate the reported reactions through covalent interactions that raise the HOMO (enamine intermediates) or lower the LUMO (iminium intermediates).  相似文献   

13.
The minimal actinorhodin polyketide synthase bearing two point mutations (KSbeta Q161A, ACP C17S) was chemically modified to carry novel C4 to C8 starter units on the ACP: on incubation with an excess of malonyl CoA new 16-carbon polyketides are made, supporting a measuring mechanism.  相似文献   

14.
《Chemistry & biology》1997,4(10):757-766
Background: Modular polyketide synthases (PKSs) are large multifunctional proteins that catalyze the biosynthesis of structurally complex bioactive products. The modular organization of PKSs has allowed the application of a combinatorial approach to the synthesis of novel polyketides via the manipulation of these biocatalysts at the genetic level. The inherent specificity of PKSs for their natural substrates, however, may place limits on the spectrum of molecular diversity that can be achieved in polyketide products. With the aim of further understanding PKS specificity, as a route to exploiting PKSs in combinatorial synthesis, we chose to examine the substrate specificity of a single intact domain within a bimodular PKS to investigate its capacity to utilize unnatural substrates.Results: We used a blocked mutant of a bimodular PKS in which formation of the triketide product could occur only via uptake and processing of a synthetic diketide intermediate. By introducing systematic changes in the native diketide structure, by means of the synthesis of unnatural diketide analogs, we have shown that the ketosynthase domain of module 2 (KS2 domain) in 6-deoxyerythronolide B synthase (DEBS) tolerates a broad range of variations in substrate structure, but it strongly discriminates against some others.Conclusions: Defining the boundaries of substrate recognition within PKS domains is crucial to the rationally engineered biosynthesis of novel polyketide products, many of which could be prepared only with great difficulty, if at all, by direct chemical synthesis or semi-synthesis. Our results suggest that the KS2 domain of DEBS1 has a relatively relaxed specificity that can be exploited for the design and synthesis of medicinally important polyketide products.  相似文献   

15.
Type I modular polyketide synthases (PKSs), which are responsible for the biosynthesis of many biologically active agents, possess a ketosynthase (KS) domain within each module to catalyze chain elongation. Acylation of the KS active site Cys residue is followed by transfer to malonyl‐ACP to yield an extended β‐ketoacyl chain (ACP=acyl carrier protein). To date, the precise contribution of KS selectivity in controlling product fidelity has been unclear. Six KS domains from trans‐acyltransferase (trans‐AT) PKSs were subjected to a mass spectrometry based elongation assay, and higher substrate selectivity was identified for the elongating step than in preceding acylation. A close correspondence between the observed KS selectivity and that predicted by phylogenetic analysis was seen. These findings provide insights into the mechanism of KS selectivity in this important group of PKSs, can serve as guidance for engineering, and show that targeted mutagenesis can be used to expand the repertoire of acceptable substrates.  相似文献   

16.
Elaiophylin is an unusual C2‐symmetric antibiotic macrodiolide produced on a bacterial modular polyketide synthase assembly line. To probe the mechanism and selectivity of diolide formation, we sought to reconstitute ring formation in vitro by using a non‐natural substrate. Incubation of recombinant elaiophylin thioesterase/cyclase with a synthetic pentaketide analogue of the presumed monomeric polyketide precursor of elaiophylin, specifically its N‐acetylcysteamine thioester, produced a novel 16‐membered C2‐symmetric macrodiolide. A linear dimeric thioester is an intermediate in ring formation, which indicates iterative use of the thioesterase active site in ligation and subsequent cyclization. Furthermore, the elaiophylin thioesterase acts on a mixture of pentaketide and tetraketide thioesters to give both the symmetric decaketide diolide and the novel asymmetric hybrid nonaketide diolide. Such thioesterases have potential as tools for the in vitro construction of novel diolides.  相似文献   

17.
The cationic gold phosphine complex [{PCy2(o‐biphenyl)}Au(NCMe)]+SbF6? (Cy=cyclohexyl) catalyzes the intermolecular, anti‐Markovnikov hydroamination reaction of monosubstituted and cis‐ and trans‐disubstituted alkylidenecyclopropanes (ACPs) with imidazolidin‐2‐ones and other nucleophiles. This reaction forms 1‐cyclopropyl alkylamine derivatives in high yield and with high regio‐ and diastereoselectivity. NMR spectroscopic analysis of gold π‐ACP complexes and control experiments point to the sp hybridization of the ACP internal alkene carbon atom as controlling the regiochemistry of the ACP hydroamination reaction.  相似文献   

18.
The acyl carrier protein (ACP) from fatty acid synthases sequesters elongating products within its hydrophobic core, but this dynamic mechanism remains poorly understood. We exploited solvatochromic pantetheine probes attached to ACP that fluoresce when sequestered. The addition of a catalytic partner lures the cargo out of the ACP and into the active site of the enzyme, thus enhancing fluorescence to reveal the elusive chain‐flipping mechanism. This activity was confirmed by the use of a dual solvatochromic cross‐linking probe and solution‐phase NMR spectroscopy. The chain‐flipping mechanism was visualized by single‐molecule fluorescence techniques, thus demonstrating specificity between the Escherichia coli ACP and its ketoacyl synthase catalytic partner KASII.  相似文献   

19.
Polyketide synthases (PKSs) usually employ a ketoreductase (KR) to catalyze the reduction of a β‐keto group, followed by a dehydratase (DH) that drives the dehydration to form a double bond between the α‐ and β‐carbon atoms. Herein, a DH*‐KR* involved in FR901464 biosynthesis was characterized: DH* acts on glyceryl‐S‐acyl carrier protein (ACP) to yield ACP‐linked pyruvate; subsequently KR* reduces α‐ketone that yields L ‐lactyl‐S‐ACP as starter unit for polyketide biosynthesis. Genetic and biochemical evidence was found to support a similar pathway that is involved in the biosynthesis of lankacidins. These results not only identified new PKS domains acting on different substrates, but also provided additional options for engineering the PKS starter pathway or biocatalysis.  相似文献   

20.
A novel chemoenzymatic approach for simple and fast site‐specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin‐derived recognition sequence (Tub‐tag). This novel strategy enables a broad range of high‐yielding and fast chemoselective C‐terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site‐specific labeling of nanobodies, GFP, and ubiquitin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号