首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Modular 1,2,3‐triazoles enabled iron‐catalyzed C? H arylations with broad scope. The novel triazole‐based bidentate auxiliary is easily accessible in a highly modular fashion and allowed for user‐friendly iron‐catalyzed C(sp2)? H functionalizations of arenes and alkenes with excellent chemo‐ and diastereoselectivities. The versatile iron catalyst also proved applicable for challenging C(sp3)? H functionalizations, and proceeds by an organometallic mode of action. The triazole‐assisted C? H activation strategy occurred under remarkably mild reaction conditions, and the auxiliary was easily removed in a traceless fashion. Intriguingly, the triazole group proved superior to previously used auxiliaries.  相似文献   

2.
A palladium‐catalyzed arylation of unactivated γmethylene C(sp3)?H and remote δ‐C?H bonds by using an oxazoline‐carboxylate directing group has been developed. Arylation occurs with a broad substrate scope and high tolerance of functional groups (i.e., halogen, nitro, cyano, ether, trifluoromethyl, amine, and ester). The oxazoline‐type auxiliary can be removed under acidic conditions.  相似文献   

3.
A quinoline‐based ligand effectively promotes the palladium‐catalyzed borylation of C(sp3)? H bonds. Primary β‐C(sp3)? H bonds in carboxylic acid derivatives as well as secondary C(sp3)? H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)‐ and rhodium(I)‐catalyzed C? H borylation reactions in terms of scope and operational conditions.  相似文献   

4.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

5.
The first copper‐catalyzed intramolecular C(sp3)? H and C(sp2)? H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)? H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2)? H amidation. Kinetic isotope effect (KIE) studies indicated that C? H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

6.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

7.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C? H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C? H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3)? C(sp3) bonds are elusive. Reported here is an asymmetric C? H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3)? C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

8.
Assoanine, pratosine, hippadine, and dehydroanhydrolycorine belong to the pyrrolophenanthridine family of alkaloids, which are isolated from plants of the Amaryllidaceae species. Structurally, these alkaloids are characterized by a tetracyclic skeleton that contains a biaryl moiety and an indole core, and compounds belonging to this class have received considerable interest from researchers in a number of fields because of their biological properties and the challenges associated with their synthesis. Herein, a strategy for the total synthesis of these alkaloids by using C? H activation chemistry is described. The tetracyclic skeleton was constructed in a stepwise manner by C(sp3)? H functionalization followed by a Catellani reaction, including C(sp2)? H functionalization. A one‐pot reaction involving both C(sp3)? H and C(sp2)? H functionalization was also attempted. This newly developed strategy is suitable for the facile preparation of various analogues because it uses simple starting materials and does not require protecting groups.  相似文献   

9.
The catalytic cross‐dehydrogenative coupling (CDC) reaction has received intense attention in recent years. The attractive feature of this coupling process is the formation of a C? C bond from two C? H moieties under oxidative conditions. In this Focus Review, recent advances in the palladium‐catalyzed CDC reactions of C(sp2)? H bond are summarized, with a focus on the period from 2011 to early 2013.  相似文献   

10.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

11.
A RhI‐catalyzed three‐component reaction of tert‐propargyl alcohol, diazoester, and alkyl halide has been developed. This reaction can be considered as a carbene‐involving sequential alkyl and alkynyl coupling, in which C(sp)? C(sp3) and C(sp3)? C(sp3) bonds are built successively on the carbenic carbon atom. The RhI‐carbene migratory insertion of an alkynyl moiety and subsequent alkylation are proposed to account for the two separate C? C bond formations. This reaction provides an efficient and tunable method for the construction of all‐carbon quaternary center.  相似文献   

12.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

13.
A new α‐C(sp3)? H alkynylation of unactivated tertiary aliphatic amines with 1‐iodoalkynes as radical alkynylating reagents in the presence of [Au2(μ‐dppm)2]2+ in sunlight provides propargylic amines. Based on mechanistic studies, a C? C coupling of an α‐aminoalkyl radical and an alkynyl radical is proposed for the C(sp3)? C(sp) bond formation. The mild, convenient, efficient, and highly selective C(sp3)? H alkynylation reaction shows excellent regioselectivity and good functional‐group compatibility. A scale‐up to gram quantities is possible with sunlight used as a clean and sustainable energy source.  相似文献   

14.
The first Cp*RhIII‐catalyzed arylation of unactivated C(sp3)? H bonds is presented. The unactivated primary C(sp3)? H bond of 2‐alkylpyridines can be activated by RhIII and further reacts with triarylboroxines to efficiently build new C(sp3)? aryl bonds. The methodology also provides a facile and efficient synthesis of unsymmetrical triarylmethanes by RhIII‐catalyzed C(sp3)? H arylation of diarylmethanes.  相似文献   

15.
Currently used directing groups for selective aliphatic β‐functionalization of carbonyl compounds show excellent reactivity and selectivity with an amide as a linker. Described herein is 2‐piconimide, used for the first time with commercially available 2‐picolinamide/2‐picolic acid as precursors, to direct C? H arylation/alkenylation by palladium catalysis. The directing group is essential for promoting the sequnetial primary and secondary C(sp3)? H arylation with different aryl iodides in one substrate. The directing group was easily removed under simple reaction conditions at room temperature.  相似文献   

16.
PdII‐catalyzed intermolecular amination of unactivated C(sp3)?H bonds has been successfully developed for the first time. This method provides a new way to achieve the challenging intermolecular amination of unactivated C(sp3)?H bonds, producing a variety of unnatural β2‐amino carboxylic acid analogues. This C(sp3)?H amination protocol is demonstrated with a broad substrate scope, good functional‐group tolerance, and chemoselectivity. It is operated without use of phosphine ligand or external oxidant.  相似文献   

17.
The site‐selective acyloxylation of aliphatic amides was achieved via a copper‐promoted C(sp3)? H bond functionalization process directed by a bidentate ligand. The reaction showed a great preference for activating C? H bonds of β‐methyl groups over those of γ‐methyl and unactivated methylene groups.  相似文献   

18.
Rollover cyclometalation involves bidentate heterocyclic donors, unusually acting as cyclometalated ligands. The resulting products, possessing a free donor atom, react differently from the classical cyclometalated complexes. Taking advantage of a “rollover”/“retro‐rollover” reaction sequence, a succession of oxidative addition and reductive elimination in a series of platinum(II) complexes [Pt(N,C)(Me)(PR3)] resulted in a rare C(sp2)?C(sp3) bond formation to give the bidentate nitrogen ligands 3‐methyl‐2,2′‐bipyridine, 3,6‐dimethyl‐2,2′‐bipyridine, and 3‐methyl‐2‐(2′‐pyridyl)‐quinoline, which were isolated and characterized. The nature of the phosphane PR3 is essential to the outcome of the reaction. This route constitutes a new method for the activation and functionalization of C?H bond in the C(3) position of bidentate heterocyclic compounds, a position usually difficult to functionalize.  相似文献   

19.
Two bulky, chiral, monodentate N‐heterocyclic carbene ligands were applied to palladium‐catalyzed asymmetric C?H arylation to incorporate C(sp3)?H bond activation. Racemic mixtures of the carbamate starting materials underwent regiodivergent reactions to afford different trans‐2,3‐substituted indolines. Although this CAr?Calkyl coupling requires high temperatures (140–160 °C), chiral induction is high. This regiodivergent reaction, when carried out with enantiopure starting materials, can lead to single structurally different enantiopure products, depending on the catalyst chirality. The C?H activation at a tertiary center was realized only in the case of a cyclopropyl group. No C?H activation takes place alpha to a tertiary center. A detailed DFT study is included and analyses of methyl versus methylene versus methine C?H activation is used to rationalize experimentally observed regio‐ and enantioselectivities.  相似文献   

20.
Enantioselective functionalizations of unbiased methylene C(sp3)?H bonds of linear systems by metal insertion are intrinsically challenging and remain a largely unsolved problem. Herein, we report a palladium(II)‐catalyzed enantioselective arylation of unbiased methylene β‐C(sp3)?H bonds enabled by the combination of a strongly coordinating bidentate PIP auxiliary with a monodentate chiral phosphoric acid (CPA). The synergistic effect between the PIP auxiliary and the non‐C2‐symmetric CPA is crucial for effective stereocontrol. A broad range of aliphatic carboxylic acids and aryl bromides can be used, providing β‐arylated aliphatic carboxylic acid derivatives in high yields (up to 96 %) with good enantioselectivities (up to 95:5 e.r.). Notably, this reaction also represents the first palladium(II)‐catalyzed enantioselective C?H activation with less reactive and cost‐effective aryl bromides as the arylating reagents. Mechanistic studies suggest that a single CPA is involved in the stereodetermining C?H palladation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号