首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uranium‐based compounds have been put forward as ideal candidates for the design of single‐molecule magnets (SMMs) with improved properties, but to date, only two examples of exchange‐coupled 3d–5f SMM containing uranium have been reported and both are based on the MnII ion. Here we have synthesized the first examples of exchange‐coupled uranium SMMs based on FeII and NiII. The SMM behavior of these complexes containing a quasi linear {M?O?U?O?M} core arises from intramolecular Fe?U and Ni?U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. The measured values of the relaxation barrier (53.9±0.9 K in the UFe2 complex and of 27.4±0.5 K in the UNi2 complex) show clearly the dependency on the spin value of the transition metal, providing important new information for the future design of improved uranium‐based SMMs.  相似文献   

2.
Single‐chain magnets (SCMs) are materials composed of magnetically isolated one‐dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide‐containing SCM. The 5f–3d heterometallic 1D chains [{[UO2(salen)(py)][M(py)4](NO3)}]n, (M=Cd ( 1 ) and M=Mn ( 2 ); py=pyridine) are assembled trough cation–cation interaction from the reaction of the uranyl(V) complex [UO2(salen)py][Cp*2Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO3)2 or Mn(NO3)2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm?1), probably as a result of strong intra‐chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.  相似文献   

3.
On the basis of uranyl complexes reacting with a polypyrrolic ligand (H4L), we explored structures and reaction energies of a series of new binuclear uranium(VI) complexes using relativistic density functional theory. Full geometry optimizations on [(UO2)2(L)], in which two uranyl groups were initially placed into the pacman ligand cavity, led to two minimum‐energy structures. These complexes with cation–cation interactions (CCI) exhibit unusual coordination modes of uranyls: one is a T‐shaped ( T ) skeleton formed by two linear uranyls {Oexo?U2?Oendo→U1(?Oexo)2}, and another is a butterfly‐like ( B ) unit with one linear uranyl coordinating side‐by‐side to a second cis‐uranyl. The CCI in T was confirmed by the calculated longest distance and lowest stretching vibrational frequency of U2?Oendo among the four U?O bonds. Isomer B is more stable than T , for which experimental tetrameric analogues are known. The formation of B and T complexes from the mononuclear [(UO2)(H2L)(thf)] ( M ) was found to be endothermic. The further protonation and dehydration of B and T are thermodynamically favorable. As a possible product, we have found a trianglelike binuclear uranium(VI) complex having a O?U?O?U?O unit.  相似文献   

4.
Simple and versatile routes to the functionalization of uranyl‐derived UV–oxo groups are presented. The oxo‐lithiated, binuclear uranium(V)–oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide “ate” complex [Li(py)2][(OUO)(N”)3] (N”=N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo‐metalated complexes display distinct U? O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo–stannylated complexes [{(R3Sn)OUO}2(L)] (R=nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium–oxo‐group exchange occurred in reactions with [TiCl(OiPr)3] to form U‐O? C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo‐functionalised by Group 14 elements.  相似文献   

5.
Mixed 3d–4f 12‐azametallacrown‐4 complexes, [Mn2Ln2(OH)2(hppt)4(OAc)2(DMF)2] ? 2 DMF ? H2O [Ln=Dy ( 1 ), Er ( 2 ), Yb ( 3 ), Tb ( 4 ) and Y ( 5 ), H2hppt=3‐(2‐hydroxyphenyl)‐5‐(pyrazin‐2‐yl)‐1,2,4‐triazole)], were synthesized by reactions of H2hppt with Mn(OAc)2 ? 4 H2O and Ln(NO3)3 ? 6 H2O. This is the first 3d–4f azametallacrown family to incorporate Ln ions into the ring sets. These isostructural complexes exhibit alternating arrangements of two Mn and two Ln ions in the rings with each pair of metal centers bound by an N?N group and μ2‐O bridging. Magnetic measurements revealed dominant antiferromagnetic interactions between metal centers, and frequency‐dependent out‐of‐phase (${\chi {^\prime}{^\prime}_{\rm{M}} }$ ) signals below 4 K suggest slow relaxation of magnetization.  相似文献   

6.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

7.
We report attempts to prepare uranyl(VI)- and uranium(VI) carbenes utilizing deprotonation and oxidation strategies. Treatment of the uranyl(VI)-methanide complex [(BIPMH)UO(2)Cl(THF)] [1, BIPMH = HC(PPh(2)NSiMe(3))(2)] with benzyl-sodium did not afford a uranyl(VI)-carbene via deprotonation. Instead, one-electron reduction and isolation of di- and trinuclear [UO(2)(BIPMH)(μ-Cl)UO(μ-O){BIPMH}] (2) and [UO(μ-O)(BIPMH)(μ(3)-Cl){UO(μ-O)(BIPMH)}(2)] (3), respectively, with concomitant elimination of dibenzyl, was observed. Complexes 2 and 3 represent the first examples of organometallic uranyl(V), and 3 is notable for exhibiting rare cation-cation interactions between uranyl(VI) and uranyl(V) groups. In contrast, two-electron oxidation of the uranium(IV)-carbene [(BIPM)UCl(3)Li(THF)(2)] (4) by 4-morpholine N-oxide afforded the first uranium(VI)-carbene [(BIPM)UOCl(2)] (6). Complex 6 exhibits a trans-CUO linkage that represents a [R(2)C═U═O](2+) analogue of the uranyl ion. Notably, treatment of 4 with other oxidants such as Me(3)NO, C(5)H(5)NO, and TEMPO afforded 1 as the only isolable product. Computational studies of 4, the uranium(V)-carbene [(BIPM)UCl(2)I] (5), and 6 reveal polarized covalent U═C double bonds in each case whose nature is significantly affected by the oxidation state of uranium. Natural Bond Order analyses indicate that upon oxidation from uranium(IV) to (V) to (VI) the uranium contribution to the U═C σ-bond can increase from ca. 18 to 32% and within this component the orbital composition is dominated by 5f character. For the corresponding U═C π-components, the uranium contribution increases from ca. 18 to 26% but then decreases to ca. 24% and is again dominated by 5f contributions. The calculations suggest that as a function of increasing oxidation state of uranium the radial contraction of the valence 5f and 6d orbitals of uranium may outweigh the increased polarizing power of uranium in 6 compared to 5.  相似文献   

8.
The crystal structure of the title compound, [Mn(NO3)(C10H8N2)(H2O)3]NO3, contains a monomeric [Mn(NO3)(bpy)(H2O)3]+ cation (bpy is 2,2′‐bi­pyridine) and a nitrate anion. The MnII ion is coordinated by one chelating bpy [Mn—N 2.241 (3) and 2.259 (3) Å], three water mol­ecules [Mn—O 2.120 (3)–2.188 (3) Å] and a nitrate ligand [Mn—O 2.228 (2) Å] in a distorted octahedral geometry. There are O?H—O hydrogen‐bonding interactions between the ligated water mol­ecules and the ligated and unligated nitrate anions, resulting in double columns of stacked cations and anions.  相似文献   

9.
The crystal structures of the four isomeric organic salts 4‐amino­pyridinium 2‐chloro‐4‐nitro­benzoate, (I), 4‐amino­pyridinium 2‐chloro‐5‐nitro­benzoate, (II), 4‐amino­pyridinium 5‐chloro‐2‐nitro­benzoate, (III), and 4‐amino­pyridinium 4‐chloro‐2‐nitro­benzoate, (IV), all C5H7N2+·C7H3ClNO4?, are presented. Compound (I) has one intramolecular hydrogen bond, one intermolecular C—H?O hydrogen bond and π–π‐stacking interactions. Compound (II) has N—H?O, C—H?O and C—H?Cl hydrogen bonds, and Cl?O—C electrostatic interactions. Compound (III) has N—H?O and C—H?O hydrogen bonds. Compound (IV) has a π–π‐stacking interaction, but no C—H?O hydrogen bonds.  相似文献   

10.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

11.
Stable geometries, electronic structures, and magnetic properties of the ZnO monolayer doped with 3d transition‐metal (TM) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) atoms substituting the cation Zn have been investigated using first‐principles pseudopotential plane wave method within density functional theory (DFT). It is found that these nine atomic species can be effectively doped in the ZnO monolayer with formation energies ranging from ?6.319 to ?0.132 eV. Furthermore, electronic structures and magnetic properties of ZnO monolayer can be modified by such doping. The results show that the doping of Cr, Mn, Fe, Co, Ni, and Cu atoms can induce magnetization, while no magnetism is observed when Sc, Ti, and V atoms are doped into the ZnO monolayer. The magnetic moment is mainly due to the strong p–d mixing of O and TM (Cr, Mn, Fe, Co, Ni, and Cu) orbitals. These results are potentially useful for spintronic applications and the development of magnetic nanostructures. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
A linear tetranuclear 3d–4f Co2Dy2 cluster assembled from a polydentate Schiff base exhibits single‐molecule magnet (SMM) behavior with an anisotropic barrier of 33.8 K. Due to the presence of diamagnetic cobalt(III) ions, the tetranuclear cluster of 1 behaves magnetically like a dinuclear Dy2 system. However, the diamagnetic segment might efficiently minimize undesirable intermolecular magnetic interactions, thereby improving the performance of the SMM behavior of 1 . This discrete complex presents us with a unique opportunity to study the magnetic properties and to probe the dynamics of magnetization in a magnetically isolated Dy2 system.  相似文献   

13.
In 2‐iodo‐N‐(3‐nitro­benzyl)­aniline, C13H11IN2O2, the mol­ecules are linked into a three‐dimensional structure by a combination of C—H?O hydrogen bonds, iodo–nitro interactions and aromatic π–π‐stacking interactions, but N—H?O and C—H?π(arene) hydrogen bonds are absent. In the isomeric 3‐iodo‐N‐(3‐nitro­benzyl)­aniline, a two‐dimensional array is generated by a combination of N—H?O, C—H?O and C—H?π(arene) hydrogen bonds, but iodo–nitro interactions and aromatic π–π‐stacking interactions are both absent.  相似文献   

14.
In the title monohydrated cocrystal, namely 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol iodide–1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol–water (1/1/1), C6H16N3O3+·I·C6H15N3O3·H2O, the neutral 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol (taci) molecule and the monoprotonated 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol cation (Htaci+) both adopt a chair conformation, with the three O atoms in axial and the three N atoms in equatorial positions. The cation, but not the neutral taci unit, exhibits intramolecular O—H...O hydrogen bonding. The entire structure is stabilized by a complex three‐dimensional network of intermolecular hydrogen bonds. The neutral taci entities and the Htaci+ cations are each aligned into chains along [001]. In these chains, two O—H...N interactions generate a ten‐membered ring as the predominant structural motif. The rings consist of vicinal 2‐amino‐1‐hydroxyethylene units of neighbouring molecules, which are paired via centres of inversion. The chains are interconnected into undulating layers parallel to the ac plane, and the layers are further held together by O—H...N hydrogen bonds and additional interactions with the iodide counter‐anions and solvent water molecules.  相似文献   

15.
Oxygenation is a fundamental transformation in synthesis. Herein, we describe the selective late‐stage oxygenation of sulfur‐containing complex molecules with ground‐state oxygen under ambient conditions. The high oxidation potential of the active uranyl cation (UO22+) enabled the efficient synthesis of sulfones. The ligand‐to‐metal charge transfer process (LMCT) from O 2p to U 5f within the O=U=O group, which generates a UV center and an oxygen radical, is assumed to be affected by the solvent and additives, and can be tuned to promote selective sulfoxidation. This tunable strategy enabled the batch synthesis of 32 pharmaceuticals and analogues by late‐stage oxygenation in an atom‐ and step‐efficient manner.  相似文献   

16.
The low‐temperature (Ad,MeArO)3mes}U] ( 1 ), with potassium spheres in the presence of a slight excess of 2.2.2‐cryptand, affords the quantitative conversion of 1 into the uranium(II) monoarene complex [K(2.2.2‐crypt)][((Ad,MeArO)3mes)U] ( 1‐K ). The molecular and electronic structure of 1‐K was established experimentally by single‐crystal X‐ray diffraction, variable‐temperature 1H NMR and X‐band EPR spectroscopy, solution‐state and solid‐state magnetism studies, and optical absorption spectroscopy. The electronic structure of the complex was further investigated by DFT calculations. The complete body of evidence confirms that 1‐K is a uranium(II) monoarene complex with a 5f 4 electronic configuration supported by δ backbonding and that the nearly reversible, room‐temperature reduction observed for 1 at ?2.495 V vs. Fc/Fc+ is principally metal‐centered.  相似文献   

17.
The title compound, meso‐5,7,7,12,14,14‐hexa­methyl‐4,11‐di­aza‐1,8‐diazo­nia­cyclo­tetra­decane bis(3‐carboxy‐5‐nitro­benz­oate), C16H38N42+·2C8H4NO6?, is a salt in which the cation is present as two configurational isomers, disordered across a common centre of inversion in P, with occupancies of 0.847 (3) and 0.153 (3). The anions are linked into chains by a single O—H?O hydrogen bond [H?O 1.71 Å, O?O 2.5063 (15) Å and O—H?O 156°] and the cations link these anion chains into sheets by means of a range of N—H?O hydrogen bonds [H?O 1.81–2.53 Å, N?O 2.718 (5)–3.3554 (19) Å and N—H?O 146–171°].  相似文献   

18.
In the title compound, C22H24N4O11, the N‐glycosidic torsion angles O′—C′—N—C and O′—C′—N—N are ?34.1 (6) and 148.8 (3)°, respectively. The mol­ecule displays an α‐d configuration with the ribo­furan­ose moiety in an O′‐exo–C′‐endo pucker. There are only weak C—H?O and C—H?N intra‐ and intermolecular interactions.  相似文献   

19.
In the title compound, 4,7,13,16,21,24‐hexa­oxa‐1,10‐diazo­nia­bicyclo­[8.8.8]hexa­cosane dioxo[7,13,21,27‐tetra­phenyl‐3,17‐di­oxa­penta­cyclo­[23.3.1.15,9.111,15.119,23]ditriaconta‐1(29),5,7,9(30),11(31),12,14,19(32),20,22,25,27‐dodeca­ene‐29,30,31,32‐tetra­olato]uranium dimethyl sulfoxide tri­solvate, (C18H38N2O6)[U(C54H40O6)O2]·3C2H6OS, the uranyl ion is bound to the four phenoxide groups of the deprotonated p‐phenyl­tetra­homodioxacalix[4]arene ligand in a cone conformation, resulting in a dianionic complex. The diprotonated [2.2.2]cryptand counter‐ion is located in the cavity defined by the eight aromatic rings of the homooxacalixarene, where it is held by cation–anion, cation–π and possibly C—H⋯π inter­actions. Dimerization in the packing leads to the formation of sandwich assemblages in which two diprotonated [2.2.2]cryptands are encompassed by two uranyl complexes.  相似文献   

20.
In the title complex, [UCl(C2H6OS)7]Cl3, the uranium metal center is coordinated in a distorted bicapped trigonal prism geometry by seven O atoms from di­methyl sulfoxide ligands and by a terminal chloride ligand. Charge balance is maintained by three outer‐sphere chloride ions per uranium(IV) metal center. Principle bond lengths include U—O 2.391 (2)–2.315 (2) Å, U—Cl 2.7207 (9) Å, and average S—O 1.540 (5) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号