首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The catalytic efficiency of ammonium dihydrogenphosphate was evaluated in the two heterogeneous forms of NH4H2PO4/MCM‐48 and NH4H2PO4/MCM‐41, as mesoporous catalysts, in the solvent free synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones through one‐pot three‐component condensation of ethyl acetoacetate, an aryl aldehyde and urea. Different reaction parameters including catalytic efficacy, solvent effect, and urea concentration are considered.  相似文献   

2.
Single crystals of oxidephosphates MTi2O2(PO4)2 [M: Fe (dark red), Co (pinkish red), Ni (green)] with edge‐lengths up to 0.4 mm were grown by chemical vapour transport. FeTi2O2(PO4)2 and CoTi2O2(PO4)2 are isotypic to NiTi2O2(PO4)2. The crystal structure of the latter was previously solved from powder data [FeTi2O2(PO4)2 (data for CoTi2O2(PO4)2 and NiTi2O2(PO4)2 in brackets): monoclinic, P21/c, Z = 2, a = 7.394(3) (7.381(6), 7.388(4)) Å, b = 7.396(2) (7.371(5), 7.334(10)) Å, c = 7.401(3) (7.366(6), 7.340(3)) Å, β = 120.20(3) (120.26(6), 120.12(4))°, R1 = 0.0393 (0.0309, 0.0539) wR2 = 0.1154 (0.0740, 0.1389), 2160 (1059, 1564) independent reflections, 75 (76, 77) variables]. The single‐crystal study allowed improved refinement using anisotropic displacement parameters, yielded lower standard deviations for the structural parameters and revealed a small amount of cation disordering. Twinning and cation disordering within the structures are rationalized by a detailed crystallographic classification of the MTi2O2(PO4)2 structure type in terms of group‐subgroup relations. The structure is characterized by a three‐dimensional network of [PO4] tetrahedra and [MIITi2O12] groups formed by face‐sharing of [MIIO6] and [TiO6] octahedra. Electronic absorption spectra of MTi2O2(PO4)2 in the UV/VIS/NIR region show rather large ligand‐field splittings for the strongly trigonally distorted chromophors [MIIO6] (M = Fe, Co, Ni) with interelectronic repulsion parameters beeing slightly smaller than in other phosphates. Interpretation of the spectra within the framework of the angular overlap model reveals a significant second‐sphere ligand field effect of TiIV ions on the electronic levels of the NiII and CoII.  相似文献   

3.
Three open‐framework gallium phosphates [C6H16N2][Ga(HPO4)(PO4)] ( 1 ), {H[C6H16N2]2[Ga7(OH)2(PO4)8]} ( 2 ), and {H[C4H12N2]2[Ga7(OH)2(PO4)8] · 2H2O} ( 3 ) were solvothermally synthesized in the presence of 2,6‐dimethylpyrazine, N‐ethylpiperazine, and piperazine as templates, respectively. Compound 1 possesses an infinite one‐dimensional chain structure connected by hydrogen‐bond interactions to generate a 3D supramolecular framework. Compounds 2 and 3 show similar inorganic framework structures, which may be viewed as the assembly of a secondary building unit (SBU), Ga6P8 containing two GaO4, two GaO5, two GaO6 as well as eight PO4 groups. The SBUs are linked with each other by vertex‐sharing oxygen atoms to form 2D sheets, which are further connected by GaO4 tetrahedra to result in the final 3D open‐framework with left‐ and right‐handed helical chains. In these materials, the well‐ordered organic species reside in the voids of structures and interact with the framework by way of hydrogen bonds.  相似文献   

4.
Fe4(OH)3(PO4)3 microcrystals are successfully synthesized by a simple hydrothermal method. Due to a possible self‐etching mechanism, different morphologies of Fe4(OH)3(PO4)3 microcrystals are obtained. Several reactions with different temperatures and times are performed to confirm the supposed self‐etching mechanism. Moreover, as a result of their different micro/nanostructures, these microcrystals present different photocatalytic activities for visible‐light‐driven photodegragadation of methylene blue.  相似文献   

5.
Structural and morphological control is an effective approach for improvement of electrochemical properties in rechargeable batteries. One‐dimensionally assembled structure composed of NASICON‐type Na3V2(PO4)3 nanoparticles were fabricated through an electrospinning method to meet the requirements for the development of efficient electrode materials in Na‐ion batteries. High‐temperature treatment of electrospun precursor fibers under an argon flow provides a nonwoven fabric of nanowires comprising crystallographically oriented nanoparticles of NASICON‐type Na3V2(PO4)3 within a carbon sheath. The mesostructure comprising NASICON‐type Na3V2(PO4)3 and carbon give a short sodium‐ion transport pass and an efficient electron conduction pass. Electrochemical properties of NASICON‐type Na3V2(PO4)3 are improved on the basis of one‐dimensional nanostructures designed in the present study.  相似文献   

6.
《中国化学会会志》2018,65(9):1104-1109
Werner‐type transition‐metal complexes (WTMC) such as [Co(NH3)5Cl]Cl2, Cu[(NH3)4]SO4, Mn(acac)3, Ni[(NH3)6]Cl2, Ni[(en)3]S2O3, and Hg[Co(SCN)4] efficiently promote the chemoselective acetylation of phenols and anilines under solvent‐free condition. The results of this study clearly shows that the optimal condition for the acetylation of anilines/phenols (1 mmol) ( 2a–r ) with acetic anhydride (1.2 mmol) in the presence of WTMC (1 mmol) and two drops of H3PO4 on heating for 10 min under solvent‐free condition gives the corresponding acetanilides/phenyl acetate ( 3a–r ) in good to excellent yield. Furthermore, the method is simple, efficient, chemoselective, and eco‐friendly under solvent‐free condition for the acetylation of anilines and phenols promoted by WTMC by using acetic anhydrate as the acetylating agent. The simple preparation of the catalyst, easy procedure of the acetylation reaction, and simple work‐up indicate the importance of WTMC for such reactions.  相似文献   

7.
Two well‐ordered 2D ‐ hexagonal cerium (IV) and erbium (III) embedded functionalized mesoporous MCM ‐ 41(MCM‐41@Serine/Ce and MCM ‐ 41@Serine/Er) have been developed via functionalization of mesoporous MCM ‐ 41. The surface modification method has been used in the preparation of serine‐grafted MCM ‐ 41 and led to the development of MCM‐41@Serine. The reaction of MCM‐41@Serine with Ce (NH4)2(NO3)6·2H2O or ErCl3·6H2O in ethanol under reflux led to the organization of MCM‐41@Serine/Ce and MCM‐41@Serine/Er catalysts. The structures of these catalysts were determined using scanning electron microscopy, mapping, energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction, inductively coupled plasma, and Brunauer–Emmett–Teller analysis. These MCM‐41@Serine/Ce and MCM‐41@Serine/Er catalysts show outstanding catalytic performance in sulfides oxidation and synthesis of 5‐substituted tetrazoles. These catalysts can be recycled for seven repeated reaction runs without showing a considerable decrease in catalytic performance.  相似文献   

8.
Inexpensive and readily available metal foils have been extracted and sculptured into nanocomposites without the expense of applied energy. The unwanted corrosion phenomenon has been contrarily utilized to realize desirable 3D nanostructures through a corrosion‐mediated self‐assembly (CMSA) method, which is unattainable by conventional 2D patterning routes. By virtue of electrochemical dissolution/re‐deposition initiated by brass corrosion, ionic derivatives (Zn2+ and Cu2+) are continuously supplied and seized by etchant ions (PO43?) to self‐assemble into well‐defined nanocomposites. Beyond 3D geometry patterning, CMSA enables arbitrarily tailoring of structures and chemical compositions with in situ multiphase amalgamation of hybrid materials, which improves homogeneity and thus mitigates phase separation issues. Importantly, the CMSA technique is demonstrated on transition metals for functional photocatalytic applications.  相似文献   

9.
Amorphous iron phosphate (FePO4) has attracted enormous attention as a promising cathode material for sodium‐ion batteries (SIBs) because of its high theoretical specific capacity and superior electrochemical reversibility. Nevertheless, the low rate performance and rapid capacity decline seriously hamper its implementation in SIBs. Herein, we demonstrate a sagacious multi‐step templating approach to skillfully craft amorphous FePO4 yolk–shell nanospheres with mesoporous nanoyolks supported inside the robust porous outer nanoshells. Their unique architecture and large surface area enable these amorphous FePO4 yolk–shell nanospheres to manifest remarkable sodium storage properties with high reversible capacity, outstanding rate performance, and ultralong cycle life.  相似文献   

10.
Heterosite FePO4 is synthesized for the first time by direct thermal oxidation of sarcopside Fe3(PO4)2. Both FePO4 and Fe3(PO4)2 have a pseudo olivine structure. Complete isostructural conversion of sarcopside into FePO4 is achieved at a temperature of 450 °C within 3 days according to the reaction Fe3(PO4)2 + ¾ O2 → 2 FePO4 + ½ Fe2O3 which leads to the extraction of iron from the sarcopside structure. Appropriate heating ramp must be applied in order to avoid the crystallization of Fe7(PO4)6. Electrochemical performances of the oxidation product are consistent with those of olivine FePO4.  相似文献   

11.
The novel zincophosphates UH‐6 (sum formula |[Co(diAMHsar)]| [Zn2(HPO4)3(PO4)] · H2O) and UH‐10 (sum formula |([Co(diAMHsar)])2| [{Zn2(HPO4)3(PO4)}2] · H2O) were synthesized in hydrothermal syntheses employing the chiral sarcophagine complex [Co(diAMHsar)]5+ as the structure‐directing agent. The inorganic part of UH‐6 consists of pearl‐like chains of alternating [ZnO4] and [PO4] tetrahedra, which are connected to the incorporated cobalt complex via numerous hydrogen bonds. UH‐10 was synthesized under similar conditions, but at higher reaction temperatures. In consequence, the crystal structures of UH‐6 and UH‐10 are closely related, although systematic disorder in UH‐10 and the lower symmetry result in a unit cell twice as large as the corresponding unit cell of UH‐6. Interestingly, in both zincophosphates only one enantiomer of the cobalt complex is present, despite the fact that a racemic mixture of the complex salt is used for synthesis. Thermogravimetric analysis and powder X‐ray diffraction of a thermally treated sample of UH‐6 reveals a phase transformation at ca. 300 °C.  相似文献   

12.
In the work, a facile and green two‐step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle‐shaped mesoporous ZnFe2O4 microrods (MRs) with a high tap density of ~0.85 g cm3, which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long‐life anode for advanced Li‐ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g?1, the resulting ZnFe2O4 MRs with high loading of ~1.4 mg per electrode still preserved a reversible capacity as large as ~542 mAh g?1. Furthermore, an initial charge capacity of ~1150 mAh g?1 is delivered by the ZnFe2O4 anode at 100 mA g?1, resulting in a high Coulombic efficiency of ~76 % for the first cycle. The superior Li‐storage properties of the as‐obtained ZnFe2O4 were rationally associated with its mesoprous micro‐/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li+ transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode–electrolyte sur‐/interfaces for efficient lithium storage, particularly at high rates.  相似文献   

13.
Mesoporous iron phosphate (FePO4) was synthesized through assembly of polymeric micelles made of asymmetric triblock co‐polymer (polystyrene‐b‐poly‐2‐vinylpyridine‐b‐ethylene oxide; PS‐PVP‐PEO). The phosphoric acid solution stimulates the formation of micelles with core–shell‐corona architecture. The negatively charged PO43? ions dissolved in the solution strongly interact with the positively charged PVP+ units through an electrostatic attraction. Also, the presence of PO43? ions realizes a bridge between the micelle surface and the metal ions. The removal of polymeric template forms the robust framework of iron phosphate with 30 nm pore diameter and 15 nm wall thickness. Our method is applicable to other mesoporous metal phosphates by changing metal sources. The obtained materials were fully characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption–desorption, Raman spectroscope, and other techniques.  相似文献   

14.
本文主要描述了由配体2,11-二硫代[3.3]二聚对二甲苯与线性氟代二羧酸银反应制得的三个银配合物的结构。这些配合物的结构因氟代二羧酸银的不同,差别也很大。配体2,11-二硫代[3.3]二聚对二甲苯与氟代丁二酸银反应得到的配合物1是一维链状结构;将银盐换成氟代戊二酸银则获得了三维立体结构的配合物2;若使用氟代己二酸银,则得到了二维多孔的配合物3。在多孔配合物3中,每个孔中容纳了两个客体三甲苯分子,在150℃时这些客体分子可被完全脱除。  相似文献   

15.
Structure and 1D‐magnetic properties of (pipzH2)[MnF4(H2PO4)] From hydrofluoric and phosphoric acid solution of Manganese(III), using piperazinium(2+) counter cations (pipzH22+) the chain‐anion [MnF4(H2PO4)]2— can be stabilized providing an interesting model system for studying the magnetic exchange interaction via phosphate bridges. Depending on the HF/H3PO4 excess (pipzH2)[MnF4(H2PO4)] crystallizes in two polymorphs I und II , differing mainly in the orientation of the cations. Form I is monoclinic, space group P21/c, Z = 4, a = 6.749(1), b = 12.039(1), c = 12.501(1) Å, β = 94.420(4)°, R = 0.023, Form II crystallizes in the same space group type P21/c, Z = 4, a = 6.651(1), b = 12.799(1), c = 12.825(1) Å, β = 110.312(5)°, R = 0.037. The Mn3+ ions are octahedrally surrounded by four terminal fluoride ligands and axially by bidentate bridging dihydrogenphosphate groups. The shape of the chain anions is very close in both modifications and characteristic for ferrodistortive Jahn‐Teller ordering.The Mn—O‐bonds along the chain direction are strongly elongated (distances 2.16 to 2.21 Å) whereas all Mn—F bond (1.81—1.88Å) are ruther short. On a large single crystal of form I 1D‐antiferromagnetic properties were found. By fitting an appropriate model based on the temperature dependence of the correlation lengths using an anisotropy constant D/k = —2.9 K a remarkably high exchange energy of J/k = —1.6(1) K along the chains could be determined.  相似文献   

16.
The symmetry, structure and formation mechanism of the structurally self‐complementary { Pd84 } = [Pd84O42(PO4)42(CH3CO2)28]70? wheel is explored. Not only does the symmetry give rise to a non‐closest packed structure, the mechanism of the wheel formation is proposed to depend on the delicate balance between reaction conditions. We achieve the resolution of gigantic polyoxopalladate species through electrophoresis and size‐exclusion chromatography, the latter has been used in conjunction with electrospray mass spectrometry to probe the formation of the ring, which was found to proceed by the stepwise aggregation of {Pd6}? = [Pd6O4(CH3CO2)2(PO4)3Na6?nHn]? building blocks. Furthermore, the higher‐order assembly of these clusters into hollow blackberry structures of around 50 nm has been observed using dynamic and static light scattering.  相似文献   

17.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

18.
The visible absorption spectrum of the water soluble polynuclear metallamacrocyclic LaIII‐CuII complex La(H2O)3[15‐MCCu(II)Phalaha‐5](Cl)3 ( 1 ) based on α‐phenylalaninehydroxamic acid appears to be solvent‐ and ion‐sensitive. The copper(II) d–d transitions of the complex 1 dissolved in methanol, ethanol, water, dimethylformamide, dimethylsulfoxide, pyridine, and N‐methylpyrrolidone were studied. The chromophoric behavior of complex 1 was investigated in the presence of the Cl, Br, I, HSO4, CO32–, HCO3, H2PO4, CN, SCN, and N3 anions. A considerable change of the d–d transition of the central copper(II) atom was observed for the strongly coordinating cyanide and azide anions. In the presence of HSO4, the d–d intensity of copper(II) also decreased significantly. The molecular structure of La2(H2O)7[15‐MCCu(II)Phalaha‐5]2(SO4)4 ( 2 ), obtained as result of the substitution of the coordinated water molecules in 1 by the SO42– anions, was investigated by X‐ray crystallography.  相似文献   

19.
New Zirconium Phosphate Fluorides with 3D‐Framework From aqueous solutions of ZrOCl2, H3PO4, HF, and various amines, two new compounds of the general formula [amH2]1/2[Zr2(HPO4)(PO4)2F] · nH2O ( I : am = N,N‐dimethylethylenediamine, n = 0,5; II : am = N,N‐dimethyl‐1,3‐diaminopropane, n = 0) adopting the ZrPOF‐1 structure type have been synthesized under hydrothermal conditions. In contrast to the monoclinic ZrPOF‐1, both compounds crystallize in the space group P 1 with a = 6.611(3), b = 9.109(4), c = 11.560(5) Å, α = 85.62(4), β = 89.60(4), γ = 70.57(4)° in I , and a = 6.616(2), b = 9.045(3), c = 11.565(4) Å, α = 85.26(4), β = 88.86(4), γ = 71.46(4)° in II . Compound III (am = ethylenediamine, n = 0) has been obtained by dehydration of ZrPOF‐1 and occurs in the space group P1 with a = 6.605(2), b = 8.787(3), c = 11.499(5) Å, α = 93.07(4), β = 90.42(4) and γ = 104.66(4)°. The structural motifs of the frameworks of the three compounds have much in common. The template and the PO3OH tetrahedra in I and II are disordered. Differences in the water content in both compounds are due to differences in the chain lengths of the amines. The absence of crystal water in compound III breaks the template disordering which is present in ZrPOF‐1. The rotation of the PO3OH tetrahedra in II and III compared with I and ZrPOF‐1 is discussed in regard with the absence of stabilizing H‐bridges in the former compounds.  相似文献   

20.
Yajing Shi  Na Li  Huihua Song  Haitao Yu 《中国化学》2016,34(12):1335-1343
Three solvent‐dependent chiral copper(II) compounds, {[Cu2(bzgluO)2(H2O)2]·4H2O}n ( 1 ), {[Cu2(bzgluO)2(DMSO)2]·H2O}n ( 2 ) and [Cu2(bzgluO)2(DMF)2]n ( 3 ) (H2bzgluO=N‐benzoyl‐L‐glutamic acid) have been synthesized under ambient temperature conditions and characterized by elemental analysis, IR spectra, UV spectra, thermogravimetric analysis, powder X‐ray diffraction (PXRD) and single‐crystal X‐ray diffraction. Compounds 1 and 2 both crystallize in the orthorhombic space group P212121. Compound 3 crystallizes in the tetragonal space group P43. Compound 1 exhibits a ladder‐like 1D chain structure, which is extended by hydrogen‐bonding interactions to form a 3D supramolecular network. Compounds 2 and 3 both give a diamond‐like 3D structure. Besides, there are hydrogen‐bonding interactions in 2 . The structural difference indicates that the solvent system plays a crucial role in modulating structures of coordination compounds. Circular dichroism (CD) and the magnetic properties of the compounds have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号