首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An efficient, simple, validated, analytical and semi‐preparative HPLC method has been developed for direct enantioresolution of (RS)‐Ketorolac (Ket) using monochloro‐methylated derivatives of cellulose and amylose, i.e. cellulose (tris‐3‐chloro‐4‐methylphenylcarbamate) and amylose (tris‐5‐chloro‐2‐methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)‐Ket under normal and reversed‐phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n‐BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose‐based CSP using EtOH, while using 2‐PrOH (15%) and amylose‐based CSP obtained the highest retention. Under reversed‐phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)‐Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and rapid HPLC method using a polysaccharide‐based chiral stationary phase (Chiralpak AD‐H) in polar‐organic phase mode has been developed for direct resolution of glycidyl nitrobenzoate (GNB) and 2‐methyl glycidyl nitrobenzoate (MGNB) enantiomers. ACN and methanol were used as mobile phase and the effects of the addition of ethanol and 2‐propanol as organic modifier in the mobile phase, flow rate and the column temperature were tested. The optimized conditions were: methanol/ethanol (80:20) at a flow rate of 0.9 mL/min and 40°C. Analysis time was ?13 min and the chiral resolution was ?2. The method was validated and resulted to be selective, precise and accurate. The method was found to be linear in 2–300 μg/mL range (R2 >0.999) with an LOD nearly 0.5 μg/mL for four enantiomers. GNB and MGNB enantiomers were obtained by asymmetric epoxidation of allyl alcohol and 2‐methyl allyl alcohol, respectively, using chiral titanium–tartrate complexes as catalyst and dichloromethane as solvent after in situ derivatization of the intermediate glycidols derivatives. The quite simple and rapid validated method was applied successfully for direct determination of the enantiomeric excess (?90%) and yield obtained in real samples of asymmetric epoxidation of allylic alcohols without further purification, workup or solvent removal. The method provides a useful and value‐added tool for controlling the enantiomeric purity of the synthesized epoxides.  相似文献   

3.
Thin silica gel layers impregnated with optically pure l ‐glutamic acid were used for direct resolution of enantiomers of (±)‐isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l ‐alanine, l ‐valine and S‐benzyl‐l ‐cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed‐phase high‐performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin‐layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)‐isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)‐isoxsuprine. The elution order in the experimental study of RP‐TLC and RP‐HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1–0.09 µg/mL in TLC while it was in the range of 22–23 pg/mL in HPLC and 11–13 ng/mL in RP‐TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A simple chiral analytical method was developed for the enantiomeric determination of cyflumetofen in cucumber, tomato, and apple by normal‐phase HPLC. The effects of mobile phase composition and column temperature on the enantioseparation were evaluated. Excellent separation was achieved at 25°C on a Chiralpak AD‐H column, with a mixture of n‐hexane and 2‐propanol (95:5, v/v) as mobile phase at a flow rate of 1.0 mL/min detecting at 234 nm. The resolution of cyflumetofen enantiomers was up to 5.5. The elution order of the enantiomers was determined by an online OR‐2090 detector, which was performed under the same chromatographic conditions. The first eluted enantiomer was (–)‐cyflumetofen and the second eluted one was (+)‐cyflumetofen. The method was validated for linearity, repeatability, accuracy, LOD, and LOQ. LOD ranged from 0.1 to 0.15 mg/kg, with the LOD varying from 0.33 to 0.5 mg/kg for each enantiomer, respectively. The average recoveries of the pesticide ranged from 71.4 to 102.0% at all fortification levels. The precision values associated with the analytical method, expressed as RSD values, were below 14.8% in all matrices. The method was then successfully applied to detect cyflumetofen enantiomers in real samples.  相似文献   

5.
An HPLC‐MS/MS method has been developed and validated for the determination of venlafaxine enantiomers in human plasma and applied to a pharmacokinetic study in healthy Chinese volunteers. The method was carried out on a vancomycin chiral column (5 µm, 250 × 4.6 mm) maintained at 25°C. The mobile phase was methanol–water containing 30 mmol/L ammonium acetate, pH 3.3 adjusted with aqueous ammonia (8:92, v/v) at the flow rate 1.0 mL/min. A tandem mass spectrometer with an electrospray interface was operated in the multiple reaction monitoring mode to detect the selected ions pair at m/z 278.0 → 120.8 for venlafaxine enantiomers and m/z 294.8 → 266.7 for estazolanm (internal standard). The method was linear in the concentration range of 0.28–423.0 ng/mL. The lower limit of quantification was 0.28 ng/mL. The intra‐and inter‐day relative standard deviations were less than 9.7%. The method was successfully applied for the evaluation of pharmacokinetic profiles of venlafaxine enantiomers in 18 healthy volnteers. Validation parameters such as the specificity, linearity, precision, accuracy and stability were evaluated, giving results within the acceptable range. Pharmacokinetic parameters of the venlafaxine enantiomers were measured in the 18 healthy Chinese volunteers who received a single regimen with venlafaxine hydrochloride capsules. The results show that AUC(0–∞), Cmax and t1/2 between S‐venlafaxine and R‐venlafaxine are significantly different (p < 0.05). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and rapid normal‐phase HPLC method for enantiospecific separation of a psychostimulant, adrafinil (ADL), and its metabolite modafinil (MDL) in rat serum and urine was developed. The separation was accomplished on a normal‐phase polysaccharide stationary phase Chiralcel OJ‐H using n‐hexane–ethanol (62:38 v/v) as a mobile phase at a flow rate of 1.0 mL/min. Detection was carried out at 225 nm using a photo diode array (PDA) detector. The elution order of the enantiomers was determined by a polarimeter connected in series with the PDA. ADL and its metabolite were recovered from rat serum and urine by solid phase extraction using Oasis HLB cartridges and the mean recoveries were ≥80%. The enantiomers were eluted within 15 min without any interference from endogenous substances. The calibration curves were linear (r2 > 0.998) in the concentration range of 1.20–500 µg/mL for ADL and MDL. The assay was specific, accurate, precise and reproducible (intra‐ and inter‐day precisions RSDs <7.2%). ADL in rat serum was stable over three freeze–thaw cycles at ambient temperature for 4 h. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A direct HPLC method for chiral separation of dorzolamide hydrochloride (4S,6S) and its enantiomer (4R,6R) was developed. Dorzolamide (4S,6S) and its antipode were separated on a chiral‐α1‐acid glycoprotein column (150×4.0 mm, 5 μm). The influences of pH, temperature, flow rate, buffer concentration, and organic modifiers of the mobile phase on the retention and enantioselectivity were evaluated. The mobile phase consisted of an ammonium acetate buffer of pH 7.0. The method was validated for linearity, repeatability, accuracy, LOD, and LOQ. Calibration curves were constructed in the range of 0.5–10 μg/mL for dorzolamide (4S,6S) and 0.2–5 μg/mL for its enantiomer (4R,6R). Repeatability (n=6) showed less than 2% RSD. LOD and LOQ of the two enantiomers were found to be 0.2 and 0.5 for dorzolamide (4S,6S), 0.05 and 0.2 for its enantiomer (4R,6R), respectively. The proposed method was applied to the determination of dorzolamide enantiomer (4R,6R) in a raw material and two different eye drop samples.  相似文献   

9.
A rapid high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous measurement of venlafaxine and O‐desmethylvenlafaxine in human plasma using fluoxetine as an internal standard. In the liquid–liquid extraction method, compounds and internal standard were extracted from plasma using methyl tertiary butyl ether as an extraction solvent. The HPLC separation of the analytes was performed on a Zorbax SB‐C18, 50 × 4.6 mm, 5 µm column, using a isocratic elution program using a mobile phase consisting of HPLC‐grade methanol: 5 mm ammonium acetate (80:20 v/v) at a flow‐rate of 1.0 mL/min with a total runtime of 3.0 min. The proposed method has been validated with a linear range of 4–400 ng/mL for venlafaxine and 5–500 ng/mL for O‐desmethyl venlafaxine. The method was applied for a bio‐equivalence study of 75 mg tablets formulation in 32 Indian male healthy subjects under fasting conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐performance liquid chromatographic (HPLC) method for enantioseparation of bupropion was developed using two isothiocyanate‐based chiral derivatizing reagents, (S)‐1‐(1‐naphthyl) ethyl isothiocyanate, (S)‐NEIT, and (R)‐α‐methyl benzyl isothiocyanate, (R)‐MBIT. The diastereomers synthesized with (S)‐NEIT were enantioseparated by reversed‐phase HPLC using gradient elution with mobile phase containing water and acetonitrile, whereas diastereomers synthesized with (R)‐MBIT were enantioseparated using triethyl amine phosphate buffer and methanol. Derivatization conditions were optimized and the method was validated for accuracy, precision and limit of detection. The limit of detection was found to be 0.040–0.043 µg/mL for each of the diastereomers prepared with (S)‐NEIT. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and selective polar ionic liquid chromatography–tandem mass spectrometric method for separation and determination of cinacalcet enantiomers in rat plasma was developed and validated. The chromatographic separation was accomplished on a Chirobiotic V column packed with vancomycin as a chiral stationary phase using 2.5 mm ammonium formate in 100% methanol as a mobile phase in an isocratic mode of elution at a flow rate of 1.0 mL/min. The analytes were extracted from rat plasma by precipitating the proteins with acetonitrile. The developed method exhibited a linear dynamic range over 0.5–500 ng/mL in rat plasma for both enantiomers. The method was successfully applied to study the pharmacokinetics after a single dose by oral administration of 10 mg/kg of cinacalcet enantiomers to healthy male Wistar rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Pharmacometric characterization studies of liquiritigenin have historically overlooked its chiral nature. To achieve complete characterization, an analytical method enabling the detection and quantification of the individual enantiomers of racemic (±) liquiritigenin is necessary. Resolution of the enantiomers of liquiritigenin was achieved using a simple high‐performance liquid chromatographic method. A Chiralpak® ADRH column was employed to perform baseline separation with UV detection at 210 nm.The standard curves were linear ranging from 0.5 to 100 µg/mL for each enantiomer. Limit of quantification was 0.5 µg/mL. The assay was applied successfully to stereoselective serum disposition of liquiritigenin enantiomers in rats. Liquiritigenin enantiomers were detected in serum as both aglycones and glucuronidated conjugates. Both unconjugated enantiomers had a serum half‐life of ~15 min in rats. The volume of distribution (Vd) for S‐ and R‐liquiritigenin was 1.49 and 2.21 L/kg, respectively. Total clearance (Cltotal) was 5.12 L/h/kg for S‐liquiritigenin and 4.79 L/h/kg for R‐liquiritigenin, and area under the curve (AUC0‐inf) was 3.95 µg h/mL for S‐liquiritigenin and 4.23 µg h/mL for R‐liquiritigenin. The large volume of distribution coupled with the short serum half‐life suggests extensive distribution of liquiritigenin into tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, rapid, selective and sensitive HPLC‐UV method has been developed and validated for the determination of ponicidin in rat plasma. The analyte was extracted from rat plasma by liquid–liquid extraction with ethyl acetate as the extraction solvent. The LC separation was performed on a Zorbax Eclipse XDB C18 analytical column (150 × 4.6 mm i.d., 5 µm) with an isocratic mobile phase consisting of methanol–water–phosphoric acid (45:55:0.01, v/v/v) at a flow rate of 1.0 mL/min. There was a good linearity over the range of 0.1–25 µg/mL (r = 0.9995) with a weighted (1/C2) least square method. The lower limit of quantification was proved to be 0.1 µg/mL. The accuracy was within ±10.0% in terms of relative error and the intra‐ and inter‐day precisions were less than 9.1% in terms of relative standard deviation. After validation, the method was successfully applied to characterize the pharmacokinetics of ponicidin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Lansoprazole, a selective proton pump inhibitor, has a chiral benzimidazole sulfoxide structure and is used for the treatment of gastric acid hypersecretory related diseases. To investigate its stereoselective pharmacokinetics, a column‐switching liquid chromatography with tandem mass spectrometry method was developed for the determination of lansoprazole enantiomers in dog plasma using (+)‐pantoprazole as an internal standard. After a simple protein precipitation procedure with acetonitrile, matrix components left behind after sample preparation were further eliminated from the sample by reversed‐phase chromatography on a C18 column. The fluent was fed to a chiral column for the separation of lansoprazole enantiomers. Baseline separation of lansoprazole enantiomers was achieved on a Chiralcel OZ‐RH column using acetonitrile/0.1% formic acid in water (35:65, v/v) as the mobile phase at 40°C. The linearity of the calibration curves ranged from 3 to 800 ng/mL for each enantiomer. Intra‐ and inter‐day precisions ranged from 2.1 to 7.3% with an accuracy of ±1.7% for (+)‐lansoprazole, and from 1.6 to 6.9% with an accuracy of ±3.5% for (–)‐lansoprazole, respectively. The validated method was successfully applied for the stereoselective pharmacokinetic study of lansoprazole in beagle dog after intravenous infusion.  相似文献   

16.
Liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53 to 64% and 72 to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi? Hydro‐RP? column with a gradient elution of acetonitrile and 10 mm ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon‐13‐labeled famotidine was used as internal standard. The calibration curves were linear (r2 > 0.99) in the concentration ranges of 0.631–252 ng/mL for umbilical and maternal plasma samples and 0.075–30.0 µg/mL for urine samples. The relative deviation of method was <14% for intra‐ and inter‐day assays, and the accuracy ranged between 93 and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma was less than 17%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A novel method was developed for the simultaneous determination of kynurenine and tryptophan by high‐performance liquid chromatography with electrochemical detection at multi‐wall carbon nanotube (MWCNT)‐modified glassy carbon electrode. The separation and detection conditions were optimized. The typical HPLC experiments were conducted by using a reversed‐phase ODS column with a mobile phase consisting of stock acetate buffer (pH 5)–methanol (4:1, v/v) using an isocratic elution at the flow rate of 1.0 mL/min. The obtained LODs for kynurenine and tryptophane were 0.5 and 0.4 µmol/L, respectively. The analytical method for human plasma samples was validated and confirmed by LC‐UV and LC‐MS. The recoveries were in the range of 84.8–110%, and the precision was lower than 5.9%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a validated UPLC‐MS/MS assay for determination of ramipril and ramiprilat from human plasma samples. The assay is capable of isolating phase II metabolites (acylglucornides) of ramipril from in vivo study samples which is otherwise not possible using conventional HPLC conditions. Both analytes were extracted from human plasma using solid‐phase extraction technique. Chromatographic separation of analytes and their respective internal standards was carried out using an Acquity UPLC BEH C18 (2.1 × 100 mm), 1.7 µm column followed by mass spectrometric detection using an Waters Quattro Premier XE. The method was validated over the range 0.35–70.0 ng/mL for ramipril and 1.0–40.0 ng/mL for ramiprilat. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We developed and validated a simple, sensitive, selective and reliable LC–ESI‐MS/MS method for direct quantitation of dropropizine enantiomers namely levodropropizine (LDP) and dextrodropropizine (DDP) in rat plasma without the need for derivatization as per regulatory guidelines. Dropropizine enantiomers and carbamazepine (internal standard) were extracted from 50 μL rat plasma using ethyl acetate. LDP and DDP resolved with good baseline separation (Rs = 4.45) on a Chiralpak IG‐3 column. The mobile phase consisted of methanol with 0.05% diethylamine pumped at a flow rate of 0.5 mL/min. Detection and quantitation were done in multiple reaction monitoring mode following the transitions m/z 237 → 160 and 237 → 194 for dropropizine enantiomers and the internal standard, respectively, in the positive ionization mode. The proposed method provided accurate and reproducible results over the linearity range of 3.23–2022 ng/mL for each enantiomer. The intra‐ and inter‐day precisions were in the ranges of 3.38–13.6 and 5.11–13.8 for LDP and 4.19–11.8 and 8.89–10.1 for DDP. Both LDP and DDP were found to be stable under different stability conditions. The method was successfully used in a stereoselective pharmacokinetic study of dropropizine enantiomers in rats following oral administration of racemate dropropizine at 100 mg/kg. The pharmacokinetic results indicate that the disposition of dropropizine enantiomers is not stereoselective and chiral inversion does not occur in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号