首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
含六重氢键寡聚芳酰胺双分子链在没有相应互补链的情况下, 其中一条链发生自组装. 通过紫外-可见(UV-Vis)光谱、动态光散射(DLS)、扫描电镜(SEM)和透射电镜(TEM)等实验手段, 对其自组装行为进行了研究. 实验结果表明, 在1,2-二氯乙烷中随温度升高在紫外区吸收发生蓝移, 说明酰胺自组装体部分解聚. 该分子链在不同极性的溶剂中都能发生自组装, 并随极性不同表现为不同的形貌. 如在甲苯中呈网状结构, 在极性相对较弱的二氯甲烷和环己烷的混合溶剂中为不规则的蜂窝状结构, 而在三氯甲烷和甲醇组成的极性混合溶剂中则组装成稳定的实心微球, 其直径随着浓度升高而增大, 通过在乙腈中的降温过程, 观察到组装体形貌由管状纤维向实心球的转变.  相似文献   

2.
基于2,7-蒽二胺和4,6-二羟基间苯二甲酸衍生物设计合成了交替的荧光二芳酰胺寡聚体A1和四芳酰胺寡聚体A2,通过引入缩乙醇醚链改善芳酰胺寡聚体在大极性溶剂中的溶解度.寡聚体的结构经~1H NMR和HRMS表征确认.据荧光滴定实验推测A2分子在极性溶剂二甲基亚砜中与均苯三甲酸客体分子发生主客体识别作用,其表观结合常数为1.95×10~3 L·mol~(-1).  相似文献   

3.
环芳酰胺的合成及自组装行为   总被引:1,自引:0,他引:1  
本文主要综述了近年来由三中心氢键和远程位阻效应促进的环芳酰胺合成,以及利用该类化合物进行自组装行为的研究进展. 在研究一步高效成环的基础上,对合成不同孔径刚性大环的方法进行了探讨. 改变大环周边侧链的性质可以调控这类大环分子的自组装行为. 最后对环芳酰胺的应用进行了简单介绍  相似文献   

4.
六重氢键的异互补寡聚芳酰胺双股分子链在自组装过程中表现出极高的顺序专一性.本文借助扫描电镜(SEM)、透射电镜(TEM)和动态光散射(DLS)等实验手段,研究了氢键编码顺序为DADDAD-DADDAD的寡聚芳酰胺分子1及异互补分子2(ADAADA-ADAADA)存在下的自组装行为.实验结果表明,分子1在四氢呋喃/甲醇(体积比为85/15)和单一溶剂丙酮中都能组装成大小均匀的囊泡结构,并且囊泡的尺寸随着溶液浓度的增加而增大;当加入异互补分子2后,囊泡则转变成实心球.利用荧光显微镜,发现该囊泡能很好地包裹荧光分子(罗丹明B),通过进一步分子结构修饰有可能实现药物包埋和缓释方面的应用.  相似文献   

5.
设计、合成了两亲性线型共轭聚合物聚(对亚苯基丁二炔)(A-PPB),研究了它在溶液中的二维自组装行为.首先合成了A-PPB的前驱体聚合物PPB,利用核磁氢谱(1H-NMR)、傅里叶红外光谱(FTIR)和拉曼光谱对聚合物的结构及分子量进行了表征.然后通过水解反应,获得了两亲性共轭聚合物A-PPB,并考察了它在水、甲醇以及甲醇/甲苯混合溶剂中的自组装行为.透射电子显微镜(TEM)的测试结果表明,A-PPB在水溶液中自组装形成了二维超分子纳米片(2D-SNS),尺寸达几微米;用原子力显微镜(AFM)测得2D-SNS的厚度为5 nm左右,由不超过3层的二维超分子聚合物层堆积而成.高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)及X-射线衍射(XRD)的测试结果表明,2D-SNS是由A-PPB分子链平行堆积而成.在甲醇溶剂中,A-PPB形成了无规聚集体,而在甲醇/甲苯混合溶剂中则自组装形成了多层堆积的二维超分子纳米片.对比研究表明,非亲水的PPB在氯仿/甲醇混合溶剂中形成的是较厚的层状聚集体.还发现聚合物的链长对于自组装形成二维超分子片层也会有影响,当用数均聚合度为8的两亲性低聚(对亚苯基丁二炔)(A-OPB)在水溶液中进行自组装时,只能形成尺寸较小的无规聚集体.由此可见,聚合物的两亲性、电荷排斥作用以及聚合物链长等因素都会对共轭聚合物的二维自组装行为产生重要影响.  相似文献   

6.
谈义萌  唐涛  杨三东  夏明珠  王风云  李彤 《色谱》2017,35(9):1003-1007
超分子溶剂是两亲化合物通过分子间有序的自组装过程形成的具有纳米结构的胶束聚集体,是一种高效提取溶剂。该文以高效液相色谱-荧光检测法为测试手段,系统地对超分子溶剂组成及用量进行了优化,发展了一种直接提取、快速测定水中多环芳烃的方法,并进行了方法学验证及实际样品检测。结果表明,采用四氢呋喃和1-辛醇制备的超分子溶剂对4种多环芳烃的回收率为89.08%~102.47%,相对标准偏差(RSD,n=5)为1.38%~3.92%。4种多环芳烃在一定范围内线性关系良好(相关系数R~20.999),检出限为1.26~9.23 ng/L。该方法前处理过程简单,有利于实现快速分析;溶剂使用量少,符合绿色化学的发展趋势,具有一定的推广价值。  相似文献   

7.
大环番衍生物单体5,11,17,23-四叔丁基-25,27-二酰氯基-26,28-二羟基杯[4]芳烃(DC)与哌嗪通过界面聚合,制备了聚(杯芳烃-哌嗪)酰胺(D).化合物D在乙酸乙酯溶液中形成平均直径为28和164 nm的双分布囊泡形聚集体. 2,2'-联吡啶(bpy)对化合物D的交联作用可将囊泡转变为实心无规则交联网.水将交联网转变为两相界面处存在的泡沫.这个变化过程表明,化合物D在不同的诱导条件下可调整聚集状态,多重诱因使其最终形成宏观泡沫状自组装构筑.化合物D是一个集合芳香大环-小杂环,疏水-亲水、氢键供体受体、刚性-柔性及富π空腔等多种结构及自组装于一体的高分子结构,其分子链在不同诱因下改变扭曲和取向导致超分子交联网络的形成.这种可逆宏观自组装现象为自组装机理的理解及刺激-响应材料的开发提供了一种有价值的试材.  相似文献   

8.
在稠环双卟啉分子两侧的卟啉环上分别连接亲水和疏水性取代基,合成双亲性稠环双卟啉分子。利用紫外-可见光谱和核磁氢谱考察了它们在不同溶剂中的溶解行为。结果表明,当双卟啉环两侧取代基的亲疏水性差异足够大时,在亲水性溶剂中,两侧取代基溶解性的差异所提供的附加亲疏水作用,可以引导稠环双卟啉分子通过π-π堆积作用形成H-聚集体。这种自组装形成的一维柱状超分子聚集体,在分子光电器件等领域具有潜在的应用前景。  相似文献   

9.
李洁  黄鹏程 《化学进展》2012,(9):1683-1695
芳炔大环是由芳(杂)环和炔键构成的具有规整多边形环状分子结构的化合物,自问世以来即受到化学家和材料学家的广泛关注。芳炔大环具有不会坍塌的刚性骨架,环上特定位置可带有柔性侧链或取代官能团,环平面上大的π电子共轭体系和环上灵活的结合点赋予芳炔大环独特而有趣的超分子性质。本文对芳炔大环的超分子性质作了综述,从大环在溶液中的缔合、热致液晶性质、一维超分子自组装及在基底表面或固-液界面二维自组装4个方面展开评述,介绍了研究方法,着重讨论了分子结构与物质性质的关系,并对芳炔大环的应用前景做了展望,为通过合理设计分子结构来制备满足尺寸、形状及功能要求的新型材料提供借鉴。  相似文献   

10.
以4-(2-(4-(苄氧基)苯氧基)乙氧基)-1,2,3-丁三醇(C)为富电子供体的醚链,与缺电子联吡啶大环化合物环双(百草枯-亚苯基)四阳离子环蕃(CPQT)和四氟取代环蕃(4FCPQT)自组装形成超分子准轮烷C(CPQT)和C(4FCPQT),并利用1HNMR的化学位移变化来研究两种不同准轮烷在温度变化时它们的相互作用。实验结果表明,由于富电子供体的一端含有3个羟基,易和缺电子联吡啶大环形成氢键,因此醚链的丁三醇端不能进入大环;缺电子联吡啶大环的一个苯环上的氢被氟取代后,由于电场力的作用,使富电子供体进入大环的概率相对降低,并使富电子醚链供体穿入大环的位置发生"偏心"作用。  相似文献   

11.
A simple hydrothermal process has been developed for the synthesis and assembly of copper and silver nanoparticles to aggregates. The reduction of Cu2+ and Ag+ ions to the zerovalent metal was performed by glyoxal in the absence of any external agent. The produced glyoxylic acid (GA) in the redox process stabi‐ lized metallic copper and silver particles and rendered them oxidation resistant for several months and dispersible in polar organic solvents and water. Detailed nanostructures of synthesized products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). The results demonstrated that assembly of nanoparticles to aggregates and their regularity were dependent on the reaction conditions such as temperature and concentration of the starting material. The Ostwald ripening process was proposed to explain the formation of copper nanoparticles by TEM observation at several times during the reaction. The existence of the surface stabilizing agent was identified by Fourier Transform infrared spectroscopy (FT‐IR) and thermogravimetric analyses (TGA).  相似文献   

12.
An automated synthesis protocol has been developed for the preparation of oligo(p-benzamide)s on solid support using a commercial peptide synthesizer employing a variation of standard Fmoc chemistry. Bis(trichloromethyl carbonate) in NMP was used to activate the aromatic carboxylic acids for acylation of secondary aromatic amines on solid support. N-Protected hepta(p-benzamide) was automatically prepared on solid support and manually converted to a solid supported block co-oligomer by attaching a poly(ethylene glycol) chain. Cleavage from the support could be achieved with minimal loss of the p-methoxybenzyl N-protective group. While the N-protected block co-oligomer was molecularly dissolved in nonpolar organic solvents, the N-deprotected block co-oligomer adopted a rod-coil conformation and showed strong aggregation as evidenced by gel permeation chromatography and transmission electron microscopy. Rigid rodlike aggregates could be observed in chloroform, toluene, as well as water.  相似文献   

13.
Aromatic oligoamides bearing six potential hydrogen-bonding sites were designed and synthesized. Functionalized with two polyethylene glycol (Mw?=?2000), this aromatic oligoamide could self-assemble via hydrogen bonds to form nanofibrils in nonpolar solvents as a result of aggregation. The resulting aggregates were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and dynamic light scattering (DLS). Upon adding another aromatic oligoamide containing complementary hydrogen bond donors and acceptors, transformation from nanofibrils to nanosphere was observed due to formation of hydrogen-bonded duplex. The nanospherical micelle was corroborated by SEM, transmission electron microscopy (TEM) and AFM tests. The results achieved here demonstrate an alternative route to effect supramolecular structures via multiple hydrogen bonding-induced self-assembly process.  相似文献   

14.
Nonamphiphilic, hydrogen-bonded hydrazide foldamers appended with four or six long flexible chains were revealed to spontaneously assemble to form vesicles in methanol and organogels in aliphatic hydrocarbons. SEM, AFM, TEM, DLS, and fluorescence microscopy were all used to identify the structures of the vesicles. It was proposed that intermolecular pi stacking of the folded frameworks and hydrogen bonding of the amide units in the appended chains induced the molecules to produce cylindrical aggregates. In polar methanol, these aggregates packed together to generate one-layered vesicles owing to hydrophobically induced entanglement of the peripheral chains, while in nonpolar hydrocarbons, the peripheral chains entwined across stacked cylinders to form three-dimensional networks and thus immobilize the liquid molecules.  相似文献   

15.
A donor-acceptor-donor triad molecule with a perylene bisimide derivative as electron acceptor, and an oligo(p-phenylene vinylene) (OPV) derivative as electron donor was synthesized (OPV-PERY-OPV). The structure of the triad was characterized by (1)H and (13)C NMR spectroscopy, size-exclusion chromatography (SEC), and MALDI-TOF spectrometry. Absorbance spectra and CD spectroscopic measurements of the triad molecule indicated the formation of aggregates in solvents such as toluene, chloroform, and tetrachloroethane, whereas it was present in the molecularly dissolved state in THF. The (1)H NMR spectra of the molecule in chloroform had, unexpectedly, four doublet peaks for the perylene protons, instead of the two doublets that is generally seen in N,N'-substituted perylene molecules. To understand the aggregation behavior and the splitting of the signals in the (1)H NMR spectra, a simple model compound was synthesized, in which the OPV units were replaced by phenyl groups (Ph-PERY-Ph). (1)H NMR spectra in CDCl(3) and tetrachloroethane again had four doublet peaks for the perylene protons, whereas in THF the perylene protons gave only a single peak. NOE and COSY spectroscopy were used to assign the peaks to their corresponding perylene protons. UV/Vis and CD spectroscopic measurements indicated that, similar to the OPV-PERY-OPV triad molecule, the model compound Ph-PERY-Ph was also present in the aggregated form in solvents such as toluene, chloroform, and tetrachloroethane, and in the molecularly dissolved state in THF. IR measurements of the model molecule in the first set of solvents indicated carbamate bond (bond;OCObond;NHbond;)-induced intermolecular hydrogen bonding, whereas in THF, the molecule was mostly present in the free form. CPK models with a dimeric structure, in which two perylene molecules are held together by intermolecular hydrogen bonding with the perylene core shifted slightly with respect to one another, could account for the optical properties and the observation of the four different peaks in the (1)H NMR spectra in polar solvent. Temperature-dependent (1)H NMR spectroscopic, UV/Vis, and CD measurements indicated that the transition from the aggregated to the molecularly dissolved state took place at higher temperatures. The electrochemical studies indicated that OPV-PERY-OPV was both p- and n-dopable, whereas Ph-PERY-Ph was only n-dopable. Cyclic voltammetry measurements of Ph-PERY-Ph in THF had two reduction peaks corresponding to the reduction of the perylene core to the monoanion and dianion, respectively. In dichloromethane, however, an additional reduction peak at lower potential was observed. This new reduction peak might arise from the hydrogen-bonded species.  相似文献   

16.
Fatty acid amides, such as n-lauroyl-L-alanine, gelate both aliphatic and aromatic hydrocarbon solvents efficiently. In addition this compound is found to gelate the binary solvent mixtures comprised of aromatic hydrocarbon, e.g., toluene and aliphatic hydrocarbons, e.g., n-heptane. Scanning electron microscopy and atomic force microscopy show that the fiber thickness of the gel assembly increases progressively in the binary mixture of n-heptane and toluene with increasing percentage of toluene. The self-assembly patterns of the gels in individual solvents, n-heptane and toluene, are however different. The toluene gel consists of predominantly one type of morphological species, while n-heptane gel has more than one species leading to the polymorphic nature of the gel. The n-heptane gel is thermally more stable than the toluene gel as evident from the measurement using differential scanning calorimetry. The thermal stability of the gels prepared in the binary mixture of n-heptane and toluene is dependent on the composition of solvent mixture. Rheology of the gels shows that they are shear-thinning material and show characteristic behavior of soft viscoelastic solid. For the gels prepared from binary solvent mixture of toluene and n-heptane, with incorporation of more toluene in the binary mixture, the gel becomes a more viscoelastic solid. The time sweep rheology experiment demonstrates that the gel made in n-heptane has faster gel formation kinetics than that prepared in toluene.  相似文献   

17.
Three urea-based aromatics 1-3, each with distinct steric and electronic characteristics, have been synthesized and their ability to undergo hierarchical assembly and gel organic solvents investigated. We have found that compound 1 promotes the sol-gel phase transition in primary alcohols (from CH3OH to C10H21OH; CGC < 15 mg/mL), while 2 and 3 do not. IR spectroscopy, X-ray powder diffraction (XRPD), and transmission electron microscopy (TEM) measurements show that 1 organizes into "cylinders" in primary alcohols, using three-centered hydrogen bonds and pi-pi aromatic interactions. The cylinders further organize into pairs through interdigitation of the methyl groups of the adjacent aromatic rings. Importantly, the lateral packing of the cylinders is enhanced as the bulk solvent polarity increases providing a mechanism for controlling the material's morphology via the solvophobic effect. Molecular mechanics (Amber) and semiempirical (AM1) calculations suggested similar conformational behavior but distinct electronic properties of 1-3. Thus, pi-deficient 2 without the methyl groups and pi-rich 3 without aromatic nitrogen fail to promote the sol-gel phase transition in alcohols due to their inability to undergo effective hierarchical assembly, which is necessary for the formation of a 3D fibrillar network. In addition, we have found that the ultrasonication of a supersaturated solution of 1 is necessary for the gelation. Presumably, a fast exchange of the aggregates of 1 is assisted with sonic waves to allow for the effective and "error free" assembly wherein an entangled net of fibers capable of encapsulating solvent molecules is formed.  相似文献   

18.
A series of polypropionamide-ureas was synthesized by the polymerization of N-mesyloxysuccinimide with diamines in polar aprotic solvents in the presence of acid acceptors. The polymerization proceeded through the formation of ring-opened adducts, followed by elimination and rearrangement yielding β-isocyanatopropionamide derivatives, which in turn were polymerized to afford polypropionamide-ureas. These polymers had inherent viscosities in the range of 0.1–0.2. Polymers having aliphatic chains which were fusible below 240°C were soluble in acidic solvents, whereas those with aromatic residues dissolved in polar aprotic solvents. Marked decomposition of the polyamide-ureas under thermogravimetric analysis generally occurred at around 320°C under nitrogen.  相似文献   

19.
The solubilities of n-tetracosane and dotriacontane in more than 50 solvents (aliphatic and aromatic hydrocarbons, their halo derivatives, alcohols, ethers, ketones, amines, etc.) miscible with liquid aliphatic hydrocarbons were determined at 293±1 K. The increments of the methylene group in hypothetical extraction systems n-octane — solvent and the free energies of methylene group transfer from solvent to n-octane were calculated. The values were found to vary within wide limits. For the overwhelming majority of polar and low-polar solvents, the energies are negative due to self-association of solvents according to the type of spatial structure. Positive energies are due to the closer packing of some low-polar solvent molecules (carbon tetrachloride and cyclohexane) in the structure compared to octane and to the absence of molecular self-association. The closer packing of these molecules leads to higher efficiency of dispersion interactions between the solvents and paraffins compared to octane.  相似文献   

20.
Hydroxyfullerene (fullerol) as a novel coating for solid-phase microextraction (SPME) fiber was first prepared by a sol-gel technology. The coating procedure involving sol solution composition and conditioning process was presented. A fullerene polysiloxane surface-bonded porous coating on the fused-silica fiber surface was obtained and confirmed by IR spectra and scanning electron microscopy. The coating has stable performance at high temperature (even to 360 degrees C) and solvents (organic and inorganic) because of the properties of fullerene and the chemical binding between the coating and the fiber surface. The extraction properties of the new coatings to less volatile organic compounds, such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons and polar aromatic amines were investigated using headspace SPME coupled with GC-electron-capture detection and GC-flame ionization detection. In addition, compared with commercial SPME stationary phases, the new coatings showed higher sensitivity, faster velocities of mass transfer for aromatic compound, and possessed planarity molecular recognition for PCBs. Moreover, this fiber was firm, inexpensive, durable and can be prepared simply. The fiber-to-fiber reproducibility was very good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号