首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the determination of the free mobility, related to the surface net charge, by quantitative gel electrophoresis, the previous arbitrary extrapolation of Ferguson plots from the lowest gel concentrations that give a mechanically stable gel to 0% T has recently been replaced by measurement of mobilities across that concentration range, using the addition of 0.5% agarose to polyacrylamide at the various low concentrations in application to a DNA fragment 155 bp in size (Orbán, L. et al., in preparation). The present study applies that approach to several proteins and DNA fragments smaller than 1300 bp, using 0.4% agarose in polyacrylamide gels of varying concentration. The intercepts of the plots with the mobility axis provide experimental data by which the free mobility in polyacrylamide gel electrophoresis can be estimated for molecules not significantly retarded in their migration at the agarose concentration admixed to polyacrylamide. Across the gel concentration range below 3% T, in the presence of agarose, the Ferguson plots of proteins and DNA fragments are convex. It was shown by mass spectrometry that this convex curvature of the plots in the mixed polymer is not significantly due to low polymerization efficiency in the concentration range of liquid polyacrylamide (below 3%T).  相似文献   

2.
Electrophoretic mobilities of DNA molecules ranging in length from 100 to 10 000 base pairs (bp) were measured in gels of eleven concentrations of agarose from 0.5 to 1.5%. Excellent fits of the dependence of mobility on DNA length were obtained with the relationship [equation: see text] showing an e(-L/gamma) crossover, where L is the length of a DNA fragment and gamma is a crossover length ranging from 8000 to 12000 bp. The other parameters in the fit are mu(s) the mobility of short DNA with unit charge in the limit as length is extrapolated to zero, and muI, the mobility of long DNA as length is extrapolated to infinity. This exponential relationship should be a useful interpolation function for determining DNA lengths over a wide range. The simplicity of this relationship may be of more fundamental significance and suggests that some common feature dominates the electrophoresis of double stranded DNA fragments in agarose gels, regardless of length.  相似文献   

3.
We demonstrate a versatile microfabricated electrophoresis platform, incorporating arrays of integrated on-chip electrodes, heaters, and temperature sensors. This design allows a range of different sieving gels to be used within the same device to perform separations involving both single- and double-stranded DNA over distances on the order of 1 cm. We use this device to compare linear and cross-linked polyacrylamide, agarose, and thermo-reversible Pluronic-F127 gels on the basis of gel casting ease, reusability, and overall separation performance using a 100 base pair double-stranded DNA ladder as a standard sample. While cross-linked polyacrylamide matrices provide consistently high-quality separations in our system over a wide range of DNA fragment sizes, Pluronic gels also offer compelling advantages in terms of the ability to remove and reload the gel. Agarose gels offer good separation performance, however, additional care must be exercised to ensure consistent gel properties as a consequence of the need for elevated gel loading temperatures. We also demonstrate the use of denaturing cross-linked polyacrylamide gels at concentrations up to 19% to separate single-stranded DNA fragments ranging in size from 18 to 400 bases in length. Primers differing by 4 bases at a read length of 30 bases can be separated with a resolution of 0.9-1.0 in under 20 min. This level of performance is sufficient to conduct a variety of genotyping assays including the rapid detection of single nucleotide polymorphisms (SNPs) in a microfabricated platform. The ability to use a single microelectrophoresis system to satisfy a wide range of separation applications offers molecular biologists an unprecedented level of flexibility in a portable and inexpensive format.  相似文献   

4.
Capillary electrophoresis of DNA in agarose solutions at 40 degrees C.   总被引:2,自引:0,他引:2  
P Bocek  A Chrambach 《Electrophoresis》1991,12(12):1059-1061
DNA fragments ranging from 72 to 1353 bp in length (phi X174 RF DNA/HaeIII) were separated by capillary electrophoresis in 0.3-2.0% solutions of agarose (Sea-Plaque GTG) at 40 degrees C. Liquified agarose above its gelling temperature is easily filled and refilled into capillaries. Its background absorbance at 260 nm was sufficiently low to allow for DNA detection at an estimated DNA load of 13 ng/10 components. Sample injection proceeded at 1 kV for 16 s. The internal capillary diameter was 150 mu, the migration path 27 cm. Migration times varied from 5 to 14 min at 185 V/cm. Potentially, the applicability of capillary electrophoresis in agarose solutions can be expected to extend to the entire size range of DNA, in view of the recent demonstration of kb-sized circular DNA separations in agarose solutions, and those of Mb-sized DNA-agarose complexes in linear polyacrylamide solutions.  相似文献   

5.
Electroosmotic properties of agarose gels with low, medium, high and super high electroendosmosis (EEO) were evaluated based on the apparent electric field mediated mobility of a neutral, fluorescent marker under constant field strength using ultrathin-layer separation configuration. Electroosmotic flow mobility values were measured in different gel concentrations and also in the absence and the presence of various linear polymer additives. Under ultrathin-layer separation conditions, a slight decrease in electroosmotic flow mobility was observed with increasing agarose gel concentration of 1 to 3% for all agarose gels investigated. When linear polymer additives, such as linear polyacrylamide, hydroxyethyl cellulose or polyethylene oxide were added to 1% low electroendosmosis agarose gel, significant reduction of the electroosmotic flow properties were observed with increasing additive concentration. Effect of the intrinsic electroosmotic properties of the various electroendosmosis agaroses on the apparent mobilities and separation performance of double-stranded DNA fragments during automated ultrathin-layer agarose gel electrophoresis was also investigated.  相似文献   

6.
DNA fragments up to 9 kb in size were stacked and separated by polyacrylamide gel electrophoresis, and those up to 50 kb in size by agarose gel electrophoresis, using a discontinuous buffer system. Polyacrylamide gels at pH 8.9, 2 degrees C, 0.01 M ionic strength, yielded sharp bands with DNA loads of 8 micrograms/cm2 of gel of a mixture of 19 DNA fragments in the size range of 72-23130 bp, while agarose gels at pH 8.5, 25 degrees C, provided well-resolved, unperturbed bands at 0.04 M ionic strength with DNA loads of 1 microgram/cm2 of the same mixture. Note that the ionic strength of the agarose gels is comparable to the conventionally used 0.5 x TBE (Tris-borate-EDTA) buffer, while that successfully applied to polyacrylamide is seven-fold less than the ionic strength of conventionally used 1 x TBE buffer, with a substantially shorter duration of electrophoresis as a result. The application of a discontinuous buffer system to the gel electrophoresis of DNA results in (i) Band identification by Rf, the migration distance relative to a sharply defined "buffer front" (moving boundary). This is sufficiently labor saving, compared to determining absolute mobilities, so as to render practical the expression of bands as numbers, with benefits for data storage, statistical manipulations and physico-chemical exploitation of mobility data. The use of Rf's also circumvents loss of precision in mobility measurement resulting from progressive band spreading of dye bands used as a front. (ii) A uniformly and highly concentrated starting zone, beneficial to resolution, is obtained, without the losses by which separate concentration steps are usually burdened.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Z Buzás  Z Boldogkoi 《Electrophoresis》1999,20(14):2838-2840
It has been known since 1990 that DNA curvature can be recognized on transverse pore gradient gels by an intersection of "Ferguson curves" with those of DNA size standards. The miniaturized PhastSystem polyacrylamide gels allow one to detect DNA curvature effortlessly and fast and at great economy of sample relative to alternative methods of electrophoresis. Using the transverse gradient gel electrophoresis method, it was found that the 660 bp length subfragment of the matrix attachment region (MAR) sequence of the chicken lysosyme gene migrates as a fragment of 800-900 bp length. When subjected to digestion with the restriction enzyme HaeIII, the fragment gives rise to two species of 248 and 412 bp length, respectively. The Ferguson curves of both species intersect with those of DNA size standards, indicating that both exhibit curvature. Only the curvature of the 412 bp fragment conforms to prediction. Ethidium bromide abolishes the effect of curvature on the fragment, reducing its apparent size from 900 to 660, the value obtained by agarose gel electrophoresis.  相似文献   

8.
The electric field dependence of the electrophoretic mobility of linear DNA fragments in agarose gels was reinvestigated in order to correct the observed mobilities for the different temperatures actually present in the gel during electrophoresis in different electric field gradients. When corrected to a common temperature, the electrophoretic mobilities of DNA fragments less than or equal to 1 kilobase pairs (kbp) in size were independent of electric field strength at all field strengths from 0.6 to 4.6 V/cm if the gels contained less than or equal to 1.4% agarose. The mobilities of larger DNA fragments increased approximately linearly with electric field strength. If the agarose concentration was higher than 2%, the mobilities of all DNA fragments increased with increasing electric field strength. The electric field dependence of the mobility was larger in gels cast and run in Tris-borate buffer (TBE) than in gels cast and run in Tris-acetate buffer (TAE), and was more pronounced in gels without ethidium bromide incorporated in the matrix. Ferguson plots were constructed for the various DNA fragments, both with and without extrapolating the temperature-corrected mobilities to zero electric field strength. Linear Ferguson plots were obtained for all fragments less than or equal to 12 kbp in size in agarose gels less than or equal to 1.4% in concentration if the mobilities were first extrapolated to zero electric field strength. Concave upward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 2 kbp in size at finite electric field strengths. Convex downward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 1 kbp in size in agarose gels greater than or equal to 2% in concentration. The mobilities of the various DNA fragments, extrapolated to zero agarose concentration and zero electric field strength, decreased with increasing DNA molecular weight; extrapolating to zero molecular weight gave an "intrinsic" DNA mobility of 2.7 x 10(-4) cm2/Vs at 20 degrees C. The pore sizes of LE agarose gels cast and run in TAE and TBE buffers were estimated from the mobility of the DNA fragments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Cole KD  Gaigalas A  Akerman B 《Electrophoresis》2006,27(22):4396-4407
The effect of agarose gel concentration and field strength on the electrophoretic trapping of open (relaxed) circular DNA was investigated using microscopic measurements of individual molecules stained with a fluorescent dye. Three open circles with sizes of 52.5, 115, and 220 kbp were trapped by the electric field (6 V/cm) and found to be predominately fixed and stretched at a single point in the gel. The length of the stretched circles did not significantly change with agarose concentration of the gels (mass fractions of 0.0025, 0.01, and 0.02). The relaxation kinetics of the trapped circles was also measured in the gels. The relaxation of the large open circles was found to be a slow process, taking several seconds. The velocity and average length of the 52.5 kbp open circles and 48.5 kbp linear DNA were measured during electrophoresis in the agarose gels. The velocity increased when the agarose concentrations were lowered, but the average length of the open-circle DNA (during electrophoresis) did not significantly change with agarose gel concentrations. The circles move through the gels by cycles of stretching and relaxation during electrophoresis. Linear dichroism was also used to investigate the trapping and alignment of the 52.5 kbp open circles. The results in this study provide information that can be used to improve electrophoretic separations of circular DNA, an important form of genetic material and commonly used to clone DNA.  相似文献   

10.
Huang MF  Hsu CE  Tseng WL  Lin YC  Chang HT 《Electrophoresis》2001,22(11):2281-2290
Separations of phiX-174/HaeIII DNA restriction fragments have been performed in the presence of electroosmotic flow (EOF) using five different polymer solutions, including linear polyacrylamide (LPA), poly(ethylene oxide) (PEO), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), and agarose. During the separation, polymer solutions entered the capillary by EOF. When using LPA solutions, bulk EOF is small due to adsorption on the capillary wall. On the other hand, separation is faster and better for the large DNA fragments (> 872 base pairs, bp) using derivative celluloses and PEO solutions. Several approaches to optimum resolution and speed by controlling EOF and/or altering electrophoretic mobility of DNA have been developed, including (i) stepwise changes of ethidium bromide (0.5-5 microg/mL), (ii) voltage programming (125-375 V/cm), (iii) use of mixed polymer solutions, and (iv) use of high concentrations of Tris-borate (TB) buffers. The DNA fragments ranging from 434 to 653 bp that were not separated using 2% PEO (8,000,000) under isocratic conditions have been completely resolved by either stepwise changes of ethidium bromide or voltage programming. Compared to PEO solutions, mixed polymer solutions prepared from PEO and HEC provide higher resolving power. Using a capillary filled with 600 mM TB buffers, pH 10.0, high-speed (< 15 min) separation of DNA (pBR 322/HaeIII digest, pBR 328/ Bg/l digest and pBR 328/Hinfl digest) has been achieved in 1.5% PEO.  相似文献   

11.
Heuer DM  Saha S  Archer LA 《Electrophoresis》2003,24(19-20):3314-3322
We have developed a procedure for synthesizing large stable branched DNA structures that enables visualization via fluorescence microscopy. Using this procedure we have synthesized large DNA stars and observed their electrophoretic behavior in polymer solutions and gels. In dilute polyacrylamide solutions, the DNA stars move as random coils and appear to experience only brief collisions with the polymer chains in solution. The effect of polymer solution concentration on the electrophoretic mobility of stars in the dilute regime is found to be in good accord with predictions of the transient entanglement coupling (TEC) model. In semidilute polymer solutions, the star arms extend in the field direction and drag the core through the matrix. The star arms form several U-shaped conformations as they collide and engage with polyacrylamide chains. The U-shaped conformations occasionally evolve into J-shaped conformations as the star arms slide off the matrix chains they engage during electrophoretic migration. In concentrated polymer solutions, the arms of the star extend and form V-shaped structures with the core as the apex. The arms then pull the core through the matrix. These V-shaped conformations are much longer-lived than U-shaped ones and, unlike the latter, do not transform to J-shaped conformations. In polyacrylamide and agarose gels, where matrix entanglements are fixed, DNA stars become trapped when entanglements with matrix molecules prevent the core from being pulled through the matrix by the extended arms. This trapping was observed at all gel concentrations and electric fields studied.  相似文献   

12.
Ugaz VM  Burke DT  Burns MA 《Electrophoresis》2002,23(16):2777-2787
We use microfabricated gel electrophoresis devices incorporating integrated on-chip electrodes, heaters, and temperature sensors to measure diffusion and dispersion of single-stranded DNA fragments in cross-linked and uncross-linked polyacrylamide gels. The microdevice format allows a complete set of diffusion and dispersion data to be collected in approximately one hour. These results are compared with corresponding data obtained in a macroscale DNA sequencer, and the effects of gel composition and initiation chemistry are explored. Although the diffusion and dispersion data exhibit similar qualitative trends both on chip and on the macroscale, the magnitudes of the coefficients measured in the microdevice are somewhat higher. This discrepancy is likely due to altered polymerization kinetics arising as a consequence of using a UV-initiated polymerization chemistry to cast the on-chip gels as opposed to the standard chemical polymerization employed on the macroscale. We also find that reductions in the magnitudes of diffusion and dispersion coefficients are achieved at higher polymer concentrations and at operating temperatures in the vicinity of 50 degrees C. Finally, we find that cross-linked polyacrylamide gels yield significantly lower diffusion and dispersion coefficients than linear polyacrylamide. These findings can be used to identify rational strategies to improve separation performance in both micro- and macroscale gel electrophoresis systems.  相似文献   

13.
Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >106 for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5–20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process.  相似文献   

14.
The upper limit of the size range of DNA amenable to separation in agarose solutions above their gelling temperature, using capillary zone electrophoresis apparatus, was increased to 12 kb. The plot of log(bp) vs. mobility derived from electrophoresis in 1.7% agarose solution is biphasic, exhibiting higher resolving power for DNA less than 1 kb in size than that of larger sizes. Resolving power for DNA larger than 1 kb increased when the agarose concentration was increased in the range of 1.0-2.6%. It was similar in solutions at 40 degrees C of SeaPrep and SeaPlaque agaroses as well as in Acrylaide (trade names are those of the manufacturer). However, the resolving power of SeaPrep agarose at 25 degrees C was inferior to that at 40 degrees C. Concave plots of log(mobility) vs. concentration of the agarose solutions are those predicted under the assumption that the effective "equivalent radius" of the DNA molecule diminishes with increasing agarose concentration in the investigated concentration range up to 2.6%.  相似文献   

15.
Zhang L  Dang F  Baba Y 《Electrophoresis》2002,23(14):2341-2346
The stepwise gradient of linear polymer matrices in microchannel electrophoresis is proposed as a means of achieving high-resolution separation of DNA samples containing a wide range of fragment sizes. In this method, multiple discrete steps in terms of polymer type or concentration are created in the microchannel by injecting appropriate solutions in order. The mixing of the various steps is found to be negligible compared to the effective length of separation channel, confirming that a stepwise gradient of matrices is formed. This technique is successfully applied to the analysis of restriction digest fragments and DNA ladders, and is demonstrated to provide higher resolution than the isocratic method, for both small and large fragments simultaneously. Even though the stepwise gradient is created manually, the reproducibility of the migration times of fragments in DNA samples is found to be quite good. Taken the separation of 100 bp DNA ladder in three steps gradient pattern as an example, the relative standard deviations of migration times are respectively less than 0.53% and 3.1% in six consecutive injections in one channel and in different channels. The migration of DNA fragments in gradient mode is shown to be similar to that for the isocratic scheme, allowing the design of each step to be made in reference to existing knowledge. These promising results indicate the great potential of this stepwise gradient method for the analysis of DNA by microchip electrophoresis, offering both high resolution and good reproducibility.  相似文献   

16.
《Electrophoresis》2018,39(19):2454-2459
PAGE is often used to resolve inorganic polyphosphates (polyP), but unfortunately polyP size ladders are not commercially available. Since several dyes that are commonly used to detect nucleic acids in gels also stain polyP, we examined the utility of commercially available DNA size ladders for estimating polyP polymer lengths by gel electrophoresis. Narrow size fractions of polyP were prepared and their polymer lengths were quantified using NMR. Commercially available DNA ladders and these polyP fractions were then subjected to PAGE to determine the relationship between migration of DNA vs polyP, which was found to be: log10(dsDNA length in bp) = 1.66 × log10(polyP length in phosphate units) − 1.97. This relationship between DNA and polyP size held for a variety of different polyacrylamide concentrations, indicating that DNA size ladders can readily be employed to estimate polyP polymer lengths by PAGE.  相似文献   

17.
Transient electric birefringence has been used as an analytical tool to study the orientation of DNA in agarose gels, and to study the orientation of the matrix alone. The sign of the birefringence of DNA oriented in an agarose gel is negative, as observed in free solution, indicating that the DNA molecules orient parallel to the direction of the electric field. If the median pore diameter of the gel is larger than the contour length of the DNA molecule, the DNA effectively does not see the matrix and the birefringence relaxation time is the same as observed in free solution. However, if the median pore diameter of the gel is smaller than the contour length of the DNA, the DNA molecule becomes stretched as well as oriented. For DNA molecules of moderate size (less than or equal to 4 kb), stretching in the gel causes the birefringence relaxation times to increase to the values expected for fully stretched molecules. Complete stretching is not observed for larger DNA molecules. The orientation and stretching of DNA molecules in the gel matrix indicates that end-on migration, or reptation, is a likely mechanism for DNA electrophoresis in agarose gels. When the electric field is rapidly reversed in polarity, very little change in the orientation of the DNA is observed if the DNA molecules were completely stretched and had reached their equilibrium orientation before the field was reversed in direction. Hence completely stretched, oriented DNA molecules are able to reverse their direction of migration in the electric field with little or no loss of orientation. However, if the DNA molecules were not completely stretched or if the equilibrium orientation had not been reached, substantial disorientation of the DNA molecules is observed at field reversal. The forced rate of disorientation in the reversing field is faster than the field-free rate of disorientation. Complicated patterns of reorientation can be observed after field reversal, depending on the degree of orientation in the original field direction. The effect of pulsed electric fields on the orientation of the agarose gel matrix itself was also investigated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The mobilities of normal and anomalously migrating DNA fragments were determined in polyacrylamide gels of different acrylamide concentrations, polymerized with 3% N,N'-methylenebisacrylamide as the crosslinker. The DNA samples were a commercially available 123-bp ladder and two molecular weight ladders containing multiple copies of two 147-base pair (bp) restriction fragments, obtained from the MspI digestion of plasmid pBR322. One of the 147 bp fragments is known to migrate anomalously slowly in polyacrylamide gels. Ferguson plots were constructed for all multimer ladders, using both absolute mobilities and relative mobilities with respect to the smallest DNA molecule in each data set. If the retardation coefficients were calculated from the relative mobilities, and the rms radius of gyration was used as the measure of DNA size, the Ogston equations were obeyed and the gel fiber parameters could be calculated. The effective pore sizes of the gels were estimated from the gel concentration at which the mobility of a given DNA molecule was reduced to one-half its mobility at zero gel concentration. The estimated pore radii ranged from approximately 130 nm for 3.5% gels to approximately 70 nm for 10.5% gels. These values are much larger than the pore sizes previously determined for the polyacrylamide matrix.  相似文献   

19.
Direct chemiluminescent immunodetection of proteins in agarose gels   总被引:2,自引:0,他引:2  
Chemiluminescent immunodetection of proteins separated by polyacrylamide gel electrophoresis is generally performed only after Western blotting. Agarose gels are adequately permeable to allow immunoprobing directly in the gel. Chemiluminescent substrates had not been applied for direct immunoprobing of agarose gels. In a comparison with direct immunostaining of fibrinogen derivatives with horse radish peroxidase (HRP)-conjugated primary antibody using 3,3'-diaminobenzidene (DAB) yielding a sensitivity in the low nanogram range, a luminol-based chemiluminescent detection extended sensitivity to the mid-picogram range with seemingly no interference from either regular or glyoxyl agarose gels. The high sensitivity of chemiluminescence extends utility of direct immunoprobing of either agarose or glyoxyl agarose composite gels for detection and measurement of both high and low molecular weight proteins/peptides which are not easily detected/measured by Western blotting. However, due to the thickness of the gels, direct immunoprobing can be quite laborious. To eliminate that drawback, we describe a simplified approach, converting the thick gels to thin ones prior to probing, that makes direct immunoprobing as easy as Western blotting.  相似文献   

20.
This paper presents results on the separation of DNA restriction fragments by high performance capillary electrophoresis (HPCE). Capillaries containing polyacrylamide with low amounts of crosslinking agent (i.e. 0.5% C) were first studied. The greater molecular accessibility offered with columns of low crosslinking, relative to higher crosslinked gels (e.g. 5% C), permitted high efficiency separations of double stranded DNA fragments up to 12,000 base pairs in length. Capillaries containing no crosslinking agent, i.e. linear polyacrylamide, were then examined. Ferguson plots (i.e. log mobility vs. %T) were used to assess the size selectivity of linear polyacrylamide capillaries. In another study, it was determined that the relative migration of DNA species was a strong function of applied electric field and molecular size. Lower fields yielded better resolution than higher fields for DNA molecules larger than about 1000 base pairs, albeit at the expense of longer separation time. Based on these results, we have examined pulsed field HPCE and have demonstrated the use of this approach to enhance separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号