首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Bisphosphonates BP molecules have shown to be efficient for coating superparamagnetic iron oxide particles. In order to clarify the respective roles of electrical charge and the length of the molecules, bisphosphonates with one or two ammonium moieties with an intermediate aliphatic group of 3, 5 or 7 carbons were synthesized and iron oxide nanoparticles coated. The evaluation on their iron core properties was made by transmission electron microscopy (TEM), nuclear magnetic relaxation dispersion (NMRD) profiles and Mössbauer spectra. The core size is close to 5 nm, with a global superparamagnetic behaviour modified by a paramagnetic Fe-based layer, probably due to surface crystal alteration. The hydrodynamic sizes increase slightly with aliphatic chain length (from 9.8 to 18.6 nm). The presence of one or two ammonium group(s) lowers the negative electrophoretic mobility up to bear zero values but reduces their colloidal stability. These BP-coated iron oxide nanoparticles are promising Magnetic Resonance Imaging (MRI) contrast agents.  相似文献   

2.
Superparamagnetic iron oxide (SPIO) nanoparticles were synthesized by coprecipitation technique and further functionalized with amino-group to obtain amino-group functionalized (amino-SPIO) nanoparticles. The X-ray diffraction results reveal the structure of amino-SPIO nanoparticles, from which the average iron core diameter is approximately 10 nm by calculation; while Zetasizer reveals their hydrodynamic diameter are mainly distributed in the range of 40?C60 nm. These nanoparticles can be taken up by liver tissue, resulting in dramatically darkening of liver tissue under T2-magnetic resonance imaging (MRI). The spin?Cspin relaxivity coefficient of these nanoparticles is 179.20 mM?1 s?1 in a 1.5 T magnetic resonance system. In addition, amino-SPIO nanoparticles were conjugated to Tat (FITC) peptide and incubated with neural stem cells in vitro, the authors can detect the positive-labeling (labeled) neural stem cells showing green fluorescence, which indicates Tat (FITC) peptide-derivated amino-SPIO nanoparticles are able to enter cells. Furthermore, it was also find significant negative T2 contrast enhancement when compared with the non-nanoparticles-labeled neural stem cells in T2-weighted MRI. The amino-SPIO nanoparticles show promising potential as a new type of labeling probes, which can be used in magnetic resonance-enhanced imaging and fluorescence diagnosis.  相似文献   

3.
Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.  相似文献   

4.
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s?1 mM?1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s?1 mM?1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.  相似文献   

5.
Stable 30–50 nm polymeric polyethylene glycol–phosphatidylethanolamine (PEG–PE)-based micelles entrapping superparamagnetic iron oxide nanoparticles (SPION) have been prepared. At similar concentrations of SPION, the SPION-micelles had significantly better magnetic resonance imaging (MRI) T2 relaxation signal compared to ‘plain’ SPION. Freeze-fracture electron microscopy confirmed SPION entrapment in the lipid core of the PEG–PE micelles. To enhance the targeting capability of these micelles, their surface was modified with the cancer cell-specific anti-nucleosome monoclonal antibody 2C5 (mAb 2C5). Such mAb 2C5-SPION immunomicelles demonstrated specific binding with cancer cells in vitro and were able to bring more SPION to the cancer cells thus demonstrating the potential to be used as targeted MRI contrast agents for tumor imaging.  相似文献   

6.
Hollow core-shell silica nanoparticles (HCSNs) are being considered as one of the most favorable drug carriers to accomplish targeted drug delivery. In the present study, we developed a simple two-step method, employing polystyrene (PS) nanoparticles (150?±?20 nm) as a sacrificial template for the synthesis of microporous HCSNs of size 230?±?30 nm. PS core and the wall structure directing agent cetyl trimethyl ammonium bromide (CTAB) were removed by calcination. Monodispersed spherical HCSNs were synthesized by optimising the parameters like water/ethanol volume ratio, PS/tetraethyl orthosilicate (TEOS) weight ratio, concentration of ammonia, and CTAB. Transmission electron microscopy (TEM) revealed the formation of hollow core-shell structure of silica with tunable thickness from 15 to 30 nm while tailoring the concentration of silica precursor. The results obtained from the cumulative release studies of doxorubicin loaded microporous HCSNs demonstrated the dependence of shell thickness on the controlled drug release behavior. HCSNs with highest shell thickness of 30 nm and lowest surface area of 600 m2/g showed delay in the doxorubicin release, proving their application as a drug carrier in targeted drug delivery systems. The novel concept of application of microporous HCSNs of pore size ~?1.3 nm with large specific surface area in the field of drug delivery is successful.  相似文献   

7.
The properties of iron present in human liver and human substantia nigra (SN) were compared. Mössbauer measurements have shown that iron is present in similar concentrations in SN and in the liver, mainly as ferritin-like iron. The size of the iron cores of ferritin, as obtained from electron microscopy, is much smaller in SN (3.6?±?0.4 nm) than in liver (5.7?±?0.5 nm). The small size in SN is in agreement with the low blocking temperature (about 10 K), determined by temperature dependent Mössbauer studies on whole tissues. ELISA studies have shown differences between SN and liver in the structures of the protein shells of ferritin. The H/L ratio (concentration of heavy to light chains) in liver is 0.40?±?0.02, while in SN it is 4.3?±?0.3. Another possible iron binding compound in SN is neuromelanin (NM). Mössbauer studies of neuromelanin, isolated from 22 SNs, demonstrated that this iron is superparamagnetic. The blocking temperature found for this neuromelanin iron is however much higher than that for ferritin.  相似文献   

8.
Early diagnosis is primarily important for the therapeutic and prognostic outcomes of malignancies including prostate cancer (PCa). However, the visuality and veracity of ultrasound imaging for the diagnosis and prognostic prediction of PCa remains poor at present. In this study, we developed a new nanoultrasound contrast agent by modifying multi-walled carbon nanotubes (MWCNTs) with polyethylene glycol (PEG) and anti-PSMA aptamer. The result showed that the modified MWCNTs offered better visuality and veracity and were able to target PCa cells more effectively as compared with the traditional contrast agent. The zeta potential was about ??38 mv. The length of this contrast agent was about 400 nm and the diameter of it was about 30 nm. The zeta potential, TEM, and FT-IR all proved the successful preparation of the agent. The vitro cytological study revealed good cell uptake and biocompatibility of the new contrast agent. The minimum detection concentration in vitro is 10 μg/ml. The earliest stage of the detection was under the parameters of frequency?=?6.0 MHz and medical index?=?0.06. Both in vitro and in vivo ultrasound imaging demonstrated that the new nanoultrasound contrast agent had a good development effect, distribution, and metabolism, and may prove to be a good targeted ultrasound contrast agent, especially for PCa.  相似文献   

9.
A simple approach to synthesize carboxymethyl dextran‐coated MnO nanoparticles (CMDex‐MnONPs) with high colloidal stability in physiological saline solutions is described here for potential applications as a magnetic resonance imaging (MRI) T1 contrast agent. The thermal decomposition methodology is used to produce uniform MnONPs with an average size of around 20 nm, and its hydrophobic surface is modified with CMDex molecules, conferring hydrophilic properties. After CMDex coating, the nanoparticle presents high colloidal stability in concentrations ranging from 10 to 50 μg mL?1, average hydrodynamic size (Z‐average) of 130 nm, polydispersity degree of ≈12%, and negative surface charge in both simulated body fluid solutions and pure water with zeta‐potential of –20 and –40 mV, respectively. The CMDex‐MnONPs with 20 nm show antiferromagnetic behavior at room temperature, and the magnetic properties are found to be strongly dependent of the nanoparticle size, increasing the contribution of the ferromagnetic Mn3O4 phase with decreasing size for nanoparticles about 3 nm. Cytotoxicity evaluation in cancerous and noncancerous cells in the range of 5.0–50.0 μg mL?1 shows low toxicity for cancerous cells and lack of the same for healthy cells lines. Related to the magnetic properties, CMDex‐MnONP presents significant r1 relaxivity and low r2/r1 relaxivity ratio. The results suggest that these nanoparticles display characteristics for potential applications as an MRI T1 contrast agent.  相似文献   

10.
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields.  相似文献   

11.
We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15?C20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.  相似文献   

12.
Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.  相似文献   

13.
Physicochemical and magnetorelaxometric characterization of the colloidal suspensions consisting of Fe-based nanoparticles coated with dextran have been carried out. Iron oxide and iron core/iron oxide shell nanoparticles were obtained by laser-induced pyrolysis of Fe(CO)5 vapours. Under different magnetic field strengths, the colloidal suspension formed by iron oxide nanoparticles showed longitudinal (R1) and transverse (R2) nuclear magnetic relaxation suspension (NMRD) profiles, similar to those previously reported for other commercial magnetic resonance imaging (MRI) contrast agents. However, colloidal suspension formed by ferromagnetic iron-core nanoparticles showed a strong increase of the R1 values at low applied magnetic fields and a strong increase of the R2 measured at high applied magnetic field. This behaviour was explained considering the larger magnetic aggregate size and saturation magnetization values measured for this sample, 92 nm and 31 emu/g Fe, respectively, with respect to those measured for the colloidal suspensions of iron oxide nanoparticles (61 nm and 23 emu/g Fe). This suspension can be used both as T1 and T2 contrast agent.  相似文献   

14.
The aim of this study was to prepare a novel targeting nano drug delivery system of 2-methoxyestradiol (2-ME) based on the folic acid-modified bovine serum albumin, in order to improve the clinical application disadvantages and antitumor effect of 2-ME. In this study, 2-methoxyestradiol-loaded albumin nanoparticles (2-ME-BSANPs) were prepared by desolvation method, and then the activated folic acid was conjugated to 2-ME-BSANPs by covalent attachment (2-ME-FA-BSANPs). The size and zeta potential of 2-ME-FA-BSANPs were about 208.8 ± 5.1 nm and ?32.70 ± 1.01 mV, respectively. 2-ME loading efficiency and loading amount of the nanoparticles were 80.49 ± 3.80 and 10.25 ± 1.59 %, respectively. SEM images indicated that 2-ME-FA-BSANPs were of a round shape, similar uniform size, and smooth surface. Studies on drug release indicated that 2-ME-FA-BSANPs had the properties of sustained and controlled release, which provided them with the ability to fight continually against cancer cells. Internalization analysis demonstrated that 2-ME-FA-BSANPs-targeting drug delivery system could get efficiently transferred into the cells through the folic acid-mediated endocytosis, leading to higher apoptosis and affording higher antitumor efficacy against SMMC-7721 cells in vitro compared with 2-ME alone. Furthermore, the cell-cycle arrest of 2-ME-FA-BSANPs on the SMMC-7721 cells occurred at G2/M phase, and 2-ME-FA-BSANPs did not change the inhibition of the tumor mechanisms of 2-ME. Based on these results, it was concluded that albumin nanoparticles could be the promising nano carrier for 2-ME, and 2-ME-FA-BSANPs-targeting drug delivery system may be promising candidate for providing high treatment efficacy with minimal side effects in future cancer therapy.  相似文献   

15.
Iron oxide nanoparticles (IONPs) were prepared via aqueous synthesis which combines alkaline co-precipitation (CP) of ferric and ferrous precursors with mild hydrothermal (HT) treatment without cupping agents (CA). In this novel synthesis route, CP + HT, we found the optimal synthesis conditions to obtain IONPs without a second phase and with the size larger than in standard CP: the equal number of Fe(II) and Fe(III) ions are co-precipitated with 6 M ammonia and further HT treated in mild conditions (120 °C for 24 h) without CA. The IONPs obtained by novel CP + HT route had faceted rectangular morphology, a mean TEM diameter of 21.5 ± 6.3 nm, a hydrodynamic diameter of 30.2 ± 9.1 nm and a zeta potential at pH 4 of 48.2 ± 0.6 mV. After the subsequent oxidation step, the final product (IONPs) was studied by XRD, FTIR and XPS, which confirmed the desired structure of γ-Fe2O3. Importantly, this synthesis was especially planned for the preparation of IONPs for biomedical applications. Thus, our novel synthesis was designed to be compliant with the regulations of nano-safety: no special atmosphere, no complex multistep size separation, no organic solvents or solvent exchange, no CA and their washing and the use of low temperature in the final optimised conditions. In addition, this simple synthesis route combines the CP and HT methods, which are both proven to be scalable. Moreover, repeatability and reproducibility of the optimal CP + HT synthesis were confirmed on the lab-scale; more than 100 repetitions with different dishes, different operators and different batches of chemicals were performed.  相似文献   

16.
Particle-tracking analysis (PTA) in combination with systematic imaging, automatic image analysis, and automatic data processing is validated for size measurements. Transmission electron microscopy (TEM) in combination with a systematic selection procedure for unbiased random image collection, semiautomatic image analysis, and data processing is validated for size, shape, and surface topology measurements. PTA is investigated as an alternative for TEM for the determination of the particle size in the framework of the EC definition of nanomaterial. The intra-laboratory validation study assessing the precision and accuracy of the TEM and PTA methods consists of series of measurements on three gold reference materials with mean area-equivalent circular diameters of 8.9 nm (RM-8011), 27.6 nm (RM-8012), and 56.0 nm (RM-8013), and two polystyrene materials with modal hydrodynamic diameters of 102 nm (P1) and 202 nm (H1). By obtaining a high level of automation, PTA proves to give precise and non-biased results for the modal hydrodynamic diameter in size range between 30 and 200 nm, and TEM proves to give precise and non-biased results for the mean area-equivalent circular diameter in the size range between 8 and 200 nm of the investigated near-monomodal near-spherical materials. The expanded uncertainties of PTA are about 9 % and are determined mainly by the repeatability uncertainty. This uncertainty is two times higher than the expanded uncertainty of 4 % obtained by TEM for analyses on identical materials. For the investigated near-monomodal and near-spherical materials, PTA can be used as an alternative to TEM for measuring the particle size, with exception of 8.9 nm gold, because this material has a size below the detection limit of PTA.  相似文献   

17.
Nano-Li2FeSiO4/C composites were prepared from three kinds of nano-SiO2 (their particle sizes are 15?±?5, 30?±?5, and 50?±?5 nm, respectively) by a traditional solid-state reaction method. The as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), elementary analyzer, Brunauer–Emmett–Teller (BET) analysis, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. XRD results reveal that nano-Li2FeSiO4 composites fabricated from nano-SiO2 (smaller than 30 nm) have less impurity. SEM results indicate that the particle size of nano-Li2FeSiO4 composites is nearly accord with the particle size of nano-SiO2. BET analysis indicates that the specific surface areas of LFS15, LFS30, and LFS50 are 35.10, 35.27, and 26.68 m2 g, respectively, and the main pore size distribution of LFS15, LFS30, and LFS50 are 1.5, 5.5, and 10 nm, respectively. Electrochemical measurements indicate that nano-Li2FeSiO4 composites prepared from nano-SiO2 of 30?±?5 nm have the best electrochemical performance among the three samples.  相似文献   

18.
The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague–Dawley rats: control (n = 6) and BC chemically induced (n = 3). Bioconjugated “anti-Her2-MNPs” were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl’s Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.  相似文献   

19.
Recently, increasing interest is spent on the synthesis of superparamagnetic iron oxide nanoparticles, followed by their characterization and evaluation of cytotoxicity towards tumorigenic cell lines. In this work, magnetite (Fe3O4) nanoparticles were synthesized by the polyol method and coated with polyethylene glycol (PEG) and glutathione (GSH), leading to the formation of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles. The nanoparticles were characterized by state-of-the-art techniques: dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and superconducting quantum interference device (SQUID) magnetic measurements. PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles have crystallite sizes of 10 and 5 nm, respectively, indicating compression in crystalline lattice upon addition of GSH on the nanoparticle surface. Both nanoparticles presented superparamagnetic behavior at room temperature, and AFM images revealed the regular spherical shape of the nanomaterials and the absence of particle aggregation. The average hydrodynamic sizes of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles were 69 ± 37 and 124 nm ± 75 nm, respectively. The cytotoxicity of both nanoparticles was screened towards human prostatic carcinoma cells (PC-3). The results demonstrated a decrease in PC-3 viability upon treatment with PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles in a concentration-dependent manner. However, the cytotoxicity was not time-dependent. Due to the superparamagnetic behavior of PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles, upon the application of an external magnetic field, those nanoparticles can be guided to the target site yielding local toxic effects to tumor cells with minimal side effects to normal tissues, highlighting the promising uses of iron oxide nanoparticles in biomedical applications.  相似文献   

20.
The continuous synthesis of nickel nanoparticles (NiNPs) in a static microchannel T-mixer by the reduction of NiCl2·6H2O in the presence of ethylene glycol without a stabilizing/capping agent was investigated. The nanoparticles were formed in accordance with the modified polyol process with hydrazine used as a reducing agent and NaOH as a catalyst for nanoparticle formation. The reaction mechanism for NiNP formation was investigated in batch with the help of Fourier transform infrared spectroscopy and X-ray diffraction (XRD) techniques. Parameters were found for reducing reaction times from 60 to 1?min. The effects of temperature (60?C120?°C) and NaOH concentration (0.1 and 0.5?M) on batch-processed particle characteristics were also studied using XRD, transmission electron microscope and electron microprobe analysis. Average particle size was reduced from 9.2?±?2.9 to 5.4?±?0.9?nm at higher temperature and NaOH concentration. Adaptation of this chemistry to a static microchannel T-mixer for continuous synthesis resulted in smooth, spherical particles. Increases in the reaction temperature from 120 to 130?°C resulted in a narrow size distribution of 5.3?±?1?nm and also resulted in magnetic properties of 5.1?emu/g (saturation magnetization), 1.1?emu/g (remanent magnetization), and 62?Oe (coercivity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号