首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the influence of the gas flow-rate, microwave power and trichloroethylene concentration on the destruction of trichloroethylene with a system based on a microwave helium plasma operating at atmospheric pressure. Based on the experimental results obtained, the proposed system allows input concentrations of C2HCl3 in the ppmv range to be reduced to output concentrations in the ppbv range (i.e. virtually quantitative destruction) by using a microwave plasma power below 1000 W. High helium flow-rates and C2HCl3 concentrations allow energy efficiency values above 600 g/kW h to be obtained. Analyses of the output gases by gas chromatography and species present in the plasma by optical emission spectroscopy confirmed the negligible presence of halogen compounds resulting from the destruction of C2HCl3, and that of CCl4 and C2Cl4 as the sole chlorine species exceeding levels of 30 ppbv. Gaseous by-products consisted mainly of CO2, NO and N2O in addition to Cl2 traces.  相似文献   

2.
The action of 1,10-phenanthroline (phen) on the THF solutions of RHgCl (R = 2,5-C6H3Cl2; 2,3,4? and 2,4,6-C6H2Cl3; 2,3,4,5?, 2,3,4,6?, and 2,3,5,6-C4HCl4 and C6Cl5) gives RHgCl (phen) when R contains two chlorine substituents in ortho (R = 2,4,6-C6H2Cl3; 2,3,4,6?, and 2,3,5,6-C6HCl4 and C6Cl5), but the symmetrisation reaction occurs when R = 2,5-C6H3Cl2; 2,3,4-C6H2Cl3 and 2,3,4,5-C6HCl4. The action of phen on HgR2 only gives HgR2 (phen) when R = 2,3,4,5-C6HCl4. Compounds of the type RHgMe do not react with phen. These results indicate that steric citects are as important as the electronegativity of R in the formation of tetracoordinated mercury compounds.  相似文献   

3.
The dissociation energy of the C2H4 · HCl van der Waals complex was determined to be 3.18±0.73 kcal mol?1 by a dissociative photoionization technique. C2H4 · HCl was produced by free expansion of a 1:4 mixture of C2H4 in HCl and the clusters were ionized with tunable synchrotron radiation. The photoionization efficiency function of (C2H4 · HCl)+ from C2H4 · HCl was determined between 600 and 1,300 Å and the onset for (C2H4 · HCl)+ was established as 1,163±2 Å = 10.66±0.02 eV; these values give ΔH f 0 (C2H4 · HCl) = ?10.7±0.7 kcal mol?1 and ΔH f 0 (C2H4·HCl+)=235.1±0.9 kcal mol?1. A complex ion dissociation energyD 0(C2H4 · HCl+) = ?0.3±0.9 kcal mol?1 was calculated from the results. The major features on the PIE curve for C2H4 · HCl+ can be analyzed in terms of the known energetic features of C2H 4 + and HCl. An extended energy diagram for the C2H4 + HCl system is presented.  相似文献   

4.
Direct on-line studies of a C2HCl3/He/O2 microwave discharge plasma made possible the evolution and detection of many unfamiliar ionic species. Numerous ionic chlorocarbons, chlorohydrocarbons, oxygenated chlorohydrocarbons, oxygenated hydrocarbon radicals, and simple hydrocarbon species were identified mass spectrometrically as by-products: C m Cl n (m = 1–4, 6, 8; n = 1–8), C m H n Cl x (m = 1–4, 6, 7, 10; n, x = 1–6), C m H n Cl x O y (m = 1–5, 12; n = 1–7; x = 1, 2, 4, 6; y = 1–3), C n H2n−1O (n = 2, 3), C m H n (m = 2, 4, 6, 8; n = 2, 4), and so on. The studies clearly showed the presence of various unfamiliar positive ionic O-containing species such as C2ClO2, CCl3CO, C2H2Cl4O2, and C4H2Cl6O3. It is apparent that positive-ion reactions play a significant role in producing many ionic species in the chemistry of C2HCl3 plasmas.  相似文献   

5.
The chemical kinetic effects of RF plasma on the pyrolysis and oxidation of methane were studied experimentally and computationally in a laminar flow reactor at 100 Torr and 373 K with and without oxygen addition into He/CH4 mixtures. The formation of excited species as well as intermediate species and products in the RF plasma reactor was measured with optical emission spectrometer and Gas Chromatography and the data were used to validate the kinetic model. The kinetic analysis was performed to understand the key reaction pathways. The experimental results showed that H2, C2 and C3 hydrocarbon formation was the major pathways for plasma assisted pyrolysis of methane. In contrast, with oxygen addition, C2 and C3 formation dramatically decreased, and syngas (H2 and CO) became the major products. The above results revealed oxygen addition significantly modified the chemistry of plasma assisted fuel pyrolysis in a RF discharge. Moreover, an increase of E/n was found to be more beneficial for the formation of higher hydrocarbons while a small amount of oxygen was presented in a He/CH4 mixture. A reaction path flux analysis showed that in a RF plasma, the formation of active species such as CH3, CH2, CH, H, O and O (1D) via the electron impact dissociation reactions played a critical role in the subsequent processes of radical chain propagating and products formation. The results showed that the electronically excitation, ionization, and dissociation processes as well as the products formation were selective and strongly dependent on the reduced electric field.  相似文献   

6.
The thermal dehydrochlorination C2HCl5 → C2Cl4 + HCl has been studied in a static system between 565 and 645 K at pressures ranging from 5 to 21 torr. The course of the reaction was followed by measuring the pressure rise in the conditioned quartz reaction vessel and by analyzing the products by gas chromatography. The observed experimental results and data from the literature for flow systems can be explained quantitatively in terms of a radical reaction model involving heterogeneous chain initiation and termination steps. The rate constants have been deduced for reactions of Cl, Cl2, and C2HCl5 over reactor walls covered with a pyrolytic carbon film and for reactions of adsorbed Cl atoms. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 322–330, 2002  相似文献   

7.
The reaction of O(3P), prepared from the Hg photosensitization of N2O, with C2HCl3 was studied at 25°C. The products of the reaction in the absence of O2 were CO, CHCl3, and polymer (as well as N2 from the N2O). The quantum yields of CO and CHCl3 were 0.23 ± 0.01 and 0.14 ± 0.05, is respectively independent of reaction conditions. The reaction mechanism is with k14a/k14 = 0.23, where k14a + k14b. Most of the HCl and CCl2 combine to form CHCl3, but some other products must also be formed to account for the difference in the CO and CHCl3 quantum yields. The C2HCl3O* adduct polymerizes without involving additional C2HCl3 molecules, since the quantum yield of C2HCl3 disappearance, ? Φ{C2HCl3}, was about 1.0 at high values of [N2O]/[C2HCl3]. The rate coefficient for the reaction of O(3P) with C2HCl3 is 0.10 that for the reaction of O(3P) with C2F4. In the presence of O2 the free radical chain oxidation occurs because of the reaction The main product is CHCl2CCl(O) with smaller amounts of CO and CCl2O, and some CO2. The chain lengths were long and values of ? Φ {C2HCl3} up to 90 were observed.  相似文献   

8.
Decomposition of chloroethylenes under electron beam irradiation in a flow reactor has been studied with different reaction environments, various initial concentrations and in the presence and absence of vaporized water. Three chlorinated ethylenes—dichloroethylene (DCE), trichloroethylene (TCE), perchloroethylene (PCE)—were used as model chlorocarbons. The degree of decomposition was 48% for DCE, 98% for TCE and 90% for PCE in air reaction environment at an initial concentration of 2000 ppm and a dose of 18–20 kGy irradiation. In the presence of water vapor (5600 ppm) decomposition of TCE was about 10% higher than in dry air. The main products were found to be CO, CO2, HCl, dichloroacetic acid (DCAA), dichloroacetyl chloride (DCAC) and dichloroethyl ester acetic acid (DEAA). DCAA, DCAC and DEAA were identified as chloro-oxygenated hydrocarbons, which could be decomposed with CO and CO2 production. Concentration profiles show that intermediate products and yields of CO and CO2 decrease with decreasing number of chlorine substitutions in the initial hydrocarbons.  相似文献   

9.
A new method to prepare compounds of the type trans-[PtCl(R)(PPh3)2] (R = C6H5; 2,5-C6H3Cl2; 2,3,4-, and 2,4,6-C6H2Cl3; 2,3,4,5-, 2,3,4,6- and 2,3,5,6-C6HCl4 and C6Cl5) by reaction of cis-[PtCl2(PPh3)2] and HgR2 in the molten state is described.The reactions of the complexes with HCl, Cl2 and I2 have been examined in order to give information about the relative ease of cleavage of the various Ptaryl bonds. The replacement of Cl by NCS suggests an associative mechanism even for the complexes in which the polychlorophenyl ligand has chlorine atoms in both ortho positions.  相似文献   

10.
In this paper, results of the pyrolysis of Freon HFC-134a (tetrafluoroethane C2H2F4) in an atmospheric pressure microwave plasma are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to produce plasma for the destruction of Freon HFC-134a. The processed gaseous Freon HFC-134a at a flow rate of 50–212 l min−1 was introduced to the plasma by four gas ducts which formed a swirl flow in the plasma reactor (a quartz cylinder). The absorbed microwave power was 0.6–3 kW. The experimental results showed that the Freon was converted into carbon black, hydrogen and fluorine. The total conversion degree of HFC-134a was up to 84% with selectivity of 100% towards H2, F2 and C2, which means that there was no conversion of HFC-134a into other hydrocarbons. The Freon destruction mass rate and corresponding energetic mass yield were up to 34.5 kg h−1 and 34.4 kg per kWh of microwave energy absorbed by the plasma, respectively.  相似文献   

11.
The objective of the present work was to study the reforming of simulated natural gas via the nonthermal plasma process with the focus on the production of hydrogen and higher hydrocarbons. The reforming of simulated natural gas was conducted in an alternating current (AC) gliding arc reactor under ambient conditions. The feed composition of the simulated natural gas contained a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. To investigate the effects of all gaseous hydrocarbons and CO2 present in the natural gas, the plasma reactor was operated with different feed compositions: pure CH4, CH4/He, CH4/C2H6/He, CH4/C2H6/C3H8/He and CH4/C2H6/C3H8/CO2. The results showed that the addition of gas components to the feed strongly influenced the reaction performance and the plasma stability. In comparisons among all the studied feed systems, both hydrogen and C2 hydrocarbon yields were found to depend on the feed gas composition in the following order: CH4/C2H6/C3H8/CO2 > CH4/C2H6/C3H8/He > CH4/C2H6/He > CH4/He > CH4. The maximum yields of hydrogen and C2 products of approximately 35% and 42%, respectively, were achieved in the CH4/C2H6/C3H8/CO2 feed system. In terms of energy consumption for producing hydrogen, the feed system of the CH4/C2H6/C3H8/CO2 mixture required the lowest input energy, in the range of 3.58 × 10−18–4.14 × 10−18 W s (22.35–25.82 eV) per molecule of produced hydrogen.  相似文献   

12.
Ethane oxidation in jet-stirred reactor has recently been investigated at high temperature (800–1200 K) in the pressure range 1–10 atm and molecular species (H2, CO, CO2, CH4, C2H2, C2H4, C2H6) concentration profiles were obtained by probe sampling and GC analysis. Ethane oxidation was modeled using a comprehensive kinetic reaction mechanism including the most recent findings concerning the kinetics of the reactions involved in the oxidation of C1? C4 hydrocarbons. The proposed mechanism is able to reproduce experimental data obtained in our high-pressure jet stirred reactor and ignition delay times measured in shock tube in the pressure range 1–13 atm, for temperatures extending from 800 to 2000 K and equivalence ratios of 0.1 to 2. It is also able to reproduce atoms concentrations (H,O) measured in shock tube at ≈2 atm. The same detailed kinetic mechanism can also be used to model the oxidation of methane, ethylene, propyne, and allene in similar conditions.  相似文献   

13.
Polychlorobenzenes can be reduced electrolytically to dichlorobenzenes by using either lead or copper as the electrodes in a MeOH/THF solution. Among the resultants of dichlorobenzenes, 1,4‐dichlorobenzene is a major product that might be due to a low enthalpy of formation. A chlorine atom situated at the ortho position of another chlorine atom in the benzene ring is removed prior to others. However, the sequence of reactivities of the polychlorobenzenes for electroreducing by lead electrodes in this study is as follows: 1,2,3,4‐C6H2Cl4 > 1,3,5‐C6H3Cl3 > C6HCl5 ~ 1,2,4,5‐C6H2Cl4 > 1,2,3,5‐C6H2Cl4 ~ 1,2,3‐C6H3Cl3 > 1,2,4‐C6H3Cl3 >C6Cl6.  相似文献   

14.
An improved synthesis of trivinylaluminum (V3Al) is described. The proton magnetic resonance (PMR) spectrum of V3Al was recorded and analyzed. A new vinylation method involving the use of V3Al as the vinylating agent has been developed, and the vinylation of organic halides by V3Al was studied at ?30, ?50 and ?70°C. Primary alkyl chlorides, such as methyl and methylene chloride, do not react with V3Al and were used as solvents. Secondary chlorides such as 2-chloropropane also do not react. t-Butyl chloride gives rise to t-butylethylene (70–98%), depending on reaction conditions, and the allylic chlorides, 3-chloro-1-butene, and 3-chloro-3-methyl-1-butene, yield the expected vinylated products and their isomers (~90%). Allyl and benzyl chloride do not react under the conditions tried. The reaction between V3Al and the ditertiary dichloride 2,6-dichloro-2,6-dimethylheptane yields several isomeric C13H24 and C11H20 hydrocarbons; however, surprisingly, C9H16 does not form. The C13 hydrocarbons arise by divinylation at the termini of the dichloride, while the C11 hydrocarbons are formed by vinylation at one and proton elimination at the other terminus of the dichloride. The presence of unsaturated C13H24 and C11H20 isomers is most likely due to proton induced isomerization. These results are explained by a proximity effect involving vinylation at one end of the dichloride by V3Al followed by rapid reaction of the second chlorine (mostly) by V2AlCl generated in situ during the first vinylation in the proximity of the chloride. At the other chlorine terminus V2AlCl causes either a second vinylation (leading to C13 hydrocarbons) or a proton elimination (leading to C11 hydrocarbons). The absence of C9H16 among the reaction products indicates that V3Al exclusively effects vinylation. The RCl + V3Al ← RV + V2AlCl reaction may be regarded as a model for initiation followed by immediate termination in cationic olefin polymerization, a process leading to vinyl-ended polymers.  相似文献   

15.
More than 70 molecules of varied nature have been identified in the envelopes of carbon‐rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutral–neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high‐enthalpy source with a flow tube and a pulsed laser photolysis–laser‐induced fluorescence system to probe the undergoing chemical reactions. The high‐enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3‐butadiene (1,3‐C4H6), and 1‐butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10?10 cm3 · molecule?1 · s?1 and exhibit slight negative temperature dependence above room temperature. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753–766, 2012  相似文献   

16.
The kinetics and mechanism of the chlorination of C3H5Cl were studied in a broad interval of temperatures and reactant concentrations. Competition was found between homolytic and nonradical chlorination of C3H5Cl in liquid phase in a nonpolar solvent. It was shown that for [C3H5Cl] < 0.1 M and T < 270 K the main reaction is the nonradical reaction, which has a negative temperature coefficient. The kinetics of the nonradical chlorination of C3H5Cl is dependent on the concentration of chlorine and is described by the sum of kinetic reactions of overall second and third orders. If [Cl2] > 1.5 M the main reaction is the reaction involving two molecules of chlorine and one molecule of olefin.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 28, No. 2, pp. 155–158, March–April, 1992.  相似文献   

17.
The photoionization efficiency (PIE) spectrum from 600 to 1200 Å for the production of the ion C2H4Cl+ by dissociative photoionization of the products of room-temperature jet expansions of a 1:4 mixture of C2H4 and HCl was measured at several nozzle pressures. The results were resolved into the PIE yield curve for the heterodimer process C2H4·HCl+hv→C2H4Cl++H+e. This reaction is necessarily characterized by a large change in geometry between neutral complex and ionic product. The observed spectrum exhibits an unusual and conspicuous peak at 15.2 eV that is characterized by a sharp cutoff to the high energy side. This feature points to the onset of strongly nonstatistical channels for the production of C2H4Cl+ at this energy such that product formation proceeds through very few states. The observed onset of C2H4Cl+ at 11.92±0.24 eV is 17±6 kcal mol?1 above the true threshold. An important conclusion is that at all energies above the onset the yield of dissociative ionization of the heterodimer to the cation C2H4Cl+ is determined by dynamical factors.  相似文献   

18.
A kinetic study of the reduction of nitric oxide (NO) by isobutane in simulated conditions of the reburning zone was carried out in a fused silica jet‐stirred reactor operating at 1 atm, at temperatures ranging from 1100 to 1450 K. In this new series of experiments, the initial mole fraction of NO was 1000 ppm, that of isobutane was 2200 ppm, and the equivalence ratio was varied from 0.75 to 2. It was demonstrated that for a given temperature, the reduction of NO is favored when the temperature is increased and a maximum NO reduction occurs slightly above stoichiometric conditions. The present results generally follow those reported in previous studies of the reduction of NO by C1 to C3 hydrocarbons or natural gas as reburn fuel. A detailed chemical kinetic modeling of the present experiments was performed using an updated and improved kinetic scheme (979 reversible reactions and 130 species). An overall reasonable agreement between the present data and the modeling was obtained. Furthermore, the proposed kinetic mechanism can be successfully used to model the reduction of NO by ethylene, ethane, acetylene, a natural gas blend (methane‐ethane 10:1), propene, and HCN. According to this study, the main route to NO reduction by isobutane involves ketenyl radical. The model indicates that the reduction of NO proceeds through the reaction path: iC4H10 → C3H6 → C2H4 → C2H3 → C2H2 → HCCO; HCCO + NO → HCNO + CO and HCN + CO2; HCNO + H → HCN → NCO → NH; NH + NO → N2 and NH + H → followed by N + NO → N2; NH + NO → N2O followed by N2O + H → N2. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 365–377, 2000  相似文献   

19.
Soot particles characteristics were investigated numerically for high temperature oxidation of C2H4/O2/N2 (C/O ratio of 2.2) in a closed jet-stirred/plug-flow reactor (JSR/PFR) system. Based on the growth mechanism of polycyclic aromatic hydrocarbons (PAHs), two mechanisms were used to explore the formation pathways of soot precursors and soot. Numerical results were compared with the experimental and reference data. The simulation results show that the value predicted for small molecule intermediates within A1 gives a strong regularity, consistent trend with reference data. However, with the hydrogen-abstraction-carbon-addition (HACA) growth mechanism, the predicted value for beyond-A1 PAH macromolecules and soot volume fraction are smaller than the experimental data. The results also show that the predicted soot volume fraction is in good agreement with experimental data when a combination of the HACA and PAHs condensation (HACA + PAH-PAH) growth mechanisms is used. Analyses of the A1 sensitivity and reaction pathway elucidated that A1 are mainly formed from C2H3, C2H2, C3H3, C6H5OH, A1C2H and A1-. The reaction 2C3H3 → A1 is the dominant route of benzene formation. The prediction results and an analysis of the A3 reaction pathway indicate that the growth process from benzene to larger aromatic hydrocarbons (beyond two-ring polycyclic aromatic hydrocarbons [PAHs]) goes by two pathways, i.e., HACA combined with the PAH-PAH radical recombination and addition reaction growth mechanisms.  相似文献   

20.
A kinetic study of methane conversion by a dinitrogen microwave plasma   总被引:9,自引:0,他引:9  
Conversion of CH4 with a N2 microwave plasma (2.45 GHz) is studied. The experiments cover the absorbed microwave power range 300–700 W with 17–62% of methane in the gas mixture, with pressures of 10–40 mbar and flow rates of 140–650 ml· min–1. The yields of C2 hydrocarbons and dihydrogen are analyzed by gas chromatography. The distance of methane addition downstream of the plasma plays an important role on the composition and the concentration of the products obtained. This distance mainly determines the energy concentrated in the active species of the plasma when they react with methane. Different behaviors for acetylene formation, on the one hand, and for ethane and ethene formation, on the other hand, have been observed, and this finding allows us to propose a kinetic mechanism for the decay of methane and for the formation of C2 hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号