首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ABSTRACT

The series of novel pyrimidine-containing amphiphiles were examined as catalysts for cleavage of phosphonates having various hydrophobicities. Kinetic data showed marked substrate specificity of three different types (i) inhibition for both substrates, (ii) catalysis for more hydrophobic phosphonate and inhibition for less hydrophobic phosphonate, and (iii) catalysis for both substrates. The highest acceleration (more than 11 times in comparison with the reaction in the absence of amphiphile) has been reached in the case of dicationic amphiphile with three hydrophobic tails.  相似文献   

2.
The reactivity of phosphorus esters with different hydrophobicities was studied in aqueous solutions of cationic surfactants containing an uracil residue, as well as in binary systems based on polyethylenimine. Pronounced substrate specificity was revealed in all supramolecular systems examined; in particular, acceleration of the hydrolysis of more hydrophobic substrate and inhibition of the reaction with less hydrophobic analog were observed. Aggregation in the examined systems was confirmed by tensiometric and conductometric measurements. The aggregation threshold considerably decreased in going from monocationic amphiphile to more hydrophobic dicationic analog due to the presence in the latter of two additional alkyl radicals.  相似文献   

3.
An anionic amphiphile has been found to form extremely hydrophobic sites in water and specifically incorporate stilbazolium-based compact hemicyanine dyes as monomeric species, resulting in induction of intense fluorescence emission.  相似文献   

4.
This paper gives the synthesis of an unusual non-steroidal amphiphile consisting of a large rigid molecule that possesses two water-solubilizing sulfates on one face and an extended hydrophobic surface on the other. The properties of this compound have been examined by X-ray analysis, light and cryo-electron microscopy, surface tension, conductivity, microrheology, and NMR. Aqueous solutions behave quite differently from those of a conventional amphiphile with long linear and flexible chains (e.g., sodium dodecyl sulfate). Thus, there is evidence that the facial amphiphile self-assembles to form viscous networks, but without the traditional critical micelle concentration, as if assembly is a stepwise process. Emulsions of toluene in water promoted by the facial amphiphile are stable for many months. In contrast to conventional surfactants, the NMR peaks are obliterated in aqueous solutions of the facial amphiphile. Both X-ray and cryo-HRSEM data suggest a lamellar morphology.  相似文献   

5.
The kinetic investigations on the alkaline hydrolysis of tris-(1,10–phenanthroline)iron(II) has been explored spectrophotometrically in microheterogeneous environment at 301?K and ionic strength of 0.13?mol?L?1. Guar gum, cationic amphiphiles, and their mixtures are used as the reaction environments to carry out the reaction. Guar gum decreases the rate of reaction, which indicates that Fe(II) complex may be trapped in the hydrophobic region of gum. Cationic amphiphile decreases the rate in the presence of guar gum. The extent of interaction between guar gum and amphiphile increases with the hydrophobic carbon chain length. The critical aggregation concentration (CAC) and critical micelle concentration (CMC) of the amphiphiles (cetyl trimenthyl ammonium bromide (CTAB), tetradecyl trimenthyl ammonium bromide (TTAB), dodecyl trimenthyl ammonium bromide (DTAB)) in the presence of guar gum have been determined with conductometry and tensiometry. All observations support either weak or strong interaction of cationic amphiphiles with guar gum. Activation parameters of the reaction in different environments have been determined which corroborate the rate data.  相似文献   

6.
A large number of protic ionic liquids (PILs) have been found to mediate solvent-hydrocarbon interactions and promote amphiphile self-assembly. Hexagonal, cubic, and lamellar lyotropic liquid crystalline phases were observed in PIL-hexadecyltrimethylammonium bromide systems. The driving force for the formation of the self-assembled aggregate structures has been attributed to an entropic contribution to the free energy of association, analogous to the hydrophobic effect in water. The specific aggregate structures formed depend upon the cationic and anionic components of the PIL and their interactions with the amphiphiles.  相似文献   

7.
8.
Amphiphiles with rigid rod-like hydrophobic moieties have been synthesized in order to investigate the effect of the packing restraints of such moieties on the micellar association behaviour of amphiphiles in aqueous solution. Investigations of the phase behaviour of amphiphile/water mixtures reveal that liquid-crystalline phases exist in defined temperature and concentration regimes and that they are all lamellar, regardless of the hydrophilic-hydrophobic balance of the amphiphile. For these lyotropic liquid-crystalline phases a polymorphism is observed which is similar to the polymorphism of thermotropic smectic liquid crystals. Surface tension measurements indicate critical micelle concentrations of the amphiphiles in dilute solutions which are similar to those of conventional surfactants. From rheological measurements it can be assumed that the variation of temperature and/or concentration of the solution does not influence the micellar shape. This is in contrast to the behaviour of non-ionic surfactants having a flexible hydrophobic group.  相似文献   

9.
The compaction of DNA induced by two simple amphiphiles, cetyltrimethylammonium bromide [CTAB] and dodecyldimethylamine oxide [DDAO], has been investigated by means of combined viscosity and dynamic light scattering measurements, to demonstrate the formation of soluble DNA/surfactant complexes, undergoing a coil-globule transition, upon the increase of the amphiphile concentration. In both of the two systems investigated, the complexation process reaches a maximum for a value of the surfactant to DNA phosphate groups molar ratio of about X = 1. Below this critical concentration, the coil and the globule state coexist in the solution, as clearly shown by the bimodal size distribution obtained from the light scattering intensity correlation functions. Some suggestions are given to support a molecular mechanism responsible for the complex formation, both in the case of a cationic surfactant (CTAB) and of a pH-dependent neutral or cationic amphiphile (DDAO), where the hydrophobic interactions play an important role.  相似文献   

10.
Self-assembly properties of a single-tailed chiral cationic surfactant, (1R,2S)-(-)-N-dodecyl-N-methylephedrinium bromide (DMEB), have been studied in water. The molecular self-assemblies of the amphiphile have been characterized by surface tension, fluorescence probes, light scattering, and microscopic techniques. The results have been compared with those of dodecyltrimethylammonium bromide (DTAB) surfactant. The critical aggregation concentration of DMEB was found to be much less than that of DTAB. Surface tension and fluorescence probe studies have suggested formation of micellar structures at low temperature (<28 degrees C) and spontaneous formation of giant vesicles in water above 28 degrees C. The mean size of the aggregates has been measured by a dynamic light scattering method. The micropolarity and microviscosity of the self-assemblies were determined by fluorescence probe technique. The (1)H NMR and FTIR spectra were recorded to elucidate the role of the hydrophobic head group towards the formation of bilayer structures. The phase transition temperatures of the vesicular aggregates were determined by measurement of fluorescence anisotropy at various temperatures.  相似文献   

11.
We have been investigating the crystallization behavior of the phospholipid amphiphile, 1,2 bis (10, 12-tricosadiynol)-sn-glycero-3-phosphocholine, DC8,9PC, which forms both vesicles and hollow tubules as well as Langmuir Blodgett monolayers and multilayers. This material has polymerizable diacetylene groups in equivalent positions on the two hydrocarbon tails. The direct crystallization from solution of this amphiphile has been studied using different solvent mixtures and temperatures. The Langmuir Blodgett technique was also used to compress and orient the tubules.  相似文献   

12.
An MHB amphiphile, N-stearoyl-l-glutamic acid (C(18)-Glu), forms disk- and fiber-like nanostructures respectively in hydrophilic and hydrophobic environments due to the inter- and intra-molecular H-bonds.  相似文献   

13.
Surface forces between LB films of metal-chelating lipids in water have been studied using colloidal probe atomic force microscopy. The LB films of an amphiphile functionalized by the iminodiacetic acid group were prepared on hydrophobic glass substrates. The electric double layer repulsion operated between these LB film surfaces changed depending on pH reflecting the different protonation states of the iminodiacetic acid groups. The titration curve of the iminodiacetic acid monolayer was obtained from the force profiles. The Cu2+ complexation process was also monitored by measuring the force profiles at various Cu2+ ion concentrations.  相似文献   

14.
Novel self-reproducing giant vesicles, consisting of a vesicular amphiphile with an imine group in its hydrophobic chain, were constructed. This vesicular amphiphile, the product of a dehydrocondensation reaction between amphiphilic aldehyde and a lipophilic aniline derivative, could be prepared within the giant vesicles. When a protected form of the aldehyde precursor was added to a suspension of giant vesicles containing the lipophilic aniline precursor and a catalyst, dehydrocondensation between the two precursors took place inside the vesicles and produced the same amphiphile as the one which constitutes the original vesicle. The newly formed amphiphiles self-assembled in the inner water pool to form small vesicles, which were eventually extruded through the outer layer of the original vesicle to the bulk water. Accordingly, this kinetic system can be designated as a self-reproducing system of giant vesicles.  相似文献   

15.
This work demonstrates a remarkable enhancement in the peroxidase activity of mitochondrial membrane protein cytochrome c (cyt c) by perturbing its tertiary structure in the presence of surface‐functionalised gold nanoparticles (GNPs) within cetyltrimethylammonium bromide (CTAB) reverse micelles. The loss in the tertiary structure of cyt c exposes its heme moiety (which is buried inside in the native globular form), which provides greater substrate (pyrogallol and H2O2) accessibility to the reactive heme residue. The surfactant shell of the CTAB reverse micelle in the presence of co‐surfactant (n‐hexanol) exerted higher crowding effects on the interfacially bound cyt c than similar anionic systems. The congested interface led to protein unfolding, which resulted in a 56‐fold higher peroxidase activity of cyt c than that in water. Further perturbation in the protein’s structure was achieved by doping amphiphile‐capped GNPs with varying hydrophobicities in the water pool of the reverse micelles. The hydrophobic moiety on the surface of the GNPs was directed towards the interfacial region, which induced major steric strain at the interface. Consequently, interaction of the protein with the hydrophobic domain of the amphiphile further disrupted its tertiary structure, which led to better opening up of the heme residue and, thereby, superior activity of the cyt c. The cyt c activity in the reverse micelles proportionately enhanced with an increase in the hydrophobicity of the GNP‐capping amphiphiles. A rigid cholesterol moiety as the hydrophobic end group of the GNP strikingly improved the cyt c activity by up to 200‐fold relative to that found in aqueous buffer. Fluorescence studies with both a tryptophan residue (Trp59) of the native protein and the sodium salt of fluorescein delineated the crucial role of the hydrophobicity of the GNP‐capping amphiphiles in improving the peroxidase activity of cyt c by unfolding its tertiary structure within the reverse micelles.  相似文献   

16.
As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.  相似文献   

17.
We demonstrate the dispersion and noncovalent functionalization of carbon nanotubes in water using peptide amphiphiles each consisting of a short hydrophobic alkyl tail coupled to a more hydrophilic peptide sequence. The assembly of peptide amphiphile molecules on the surfaces of carbon nanotubes adds biofunctionality to these one-dimensional conductors and simultaneously eliminates the hydrophobic nanotube-water interface, thus dispersing them in the aqueous medium. This should occur without the degradation of their structural, electronic, and optical properties caused by covalent functionalization and without the need for specific peptide sequences designed to bind with nanotube surfaces. The encapsulation by peptide amphiphiles is confirmed using transmission electron microscopy and optical absorbance spectroscopy and may have significant future applications in biosensing or medicine.  相似文献   

18.
Interaction between polymer and surfactant bearing opposite charges is much more complex from a physicochemical point of view as compared to interaction between ionic surfactant and nonionic polymer. Electrostatic and hydrophobic interactions interplay in the former, whereas the hydrophobic effect is the prevailing factor in the latter. We have studied the interaction between a water-soluble polyanion, sodium salt of carboxymethylcellulose (NaCMC), with a cationic amphiphile, CTAB, in aqueous medium. There were manifold discrepancies with the reported works in NaCMC-alkyltrimethylammonium bromide, which is assumed to be an effect of difference in degree of substitution, which in turn affects the charge density of the polymer chain. We have noticed that the bulk complexation and interfacial interaction driven by electrostatic forces operate side by side. Thereafter, there is a wrapping process by the polyanion to the polymer-induced smaller surfactant aggregates driven by increase in entropy of the solution as a result of expulsion of the counterions from the ionic atmosphere around the surfactant aggregate. Because of the electrostatic interaction, hydrophobicity of the polymer-surfactant complex increases, leading to coacervation, and again solubilization in the hydrophobic core of the self-aggregated structure provided by the added excess CTAB. The tensiometric, conductometric, microcalorimetric, and turbidimetric techniques have been applied to address these problems.  相似文献   

19.
A hydrophobic compound, which we name 3C18-Azo, containing an azo head and three 18 C alkyl chains has the capacity to form an amphiphile by capping it with a cyclodextrin (CD) by inclusion complexation. The amphiphilic compound self-assembles into vesicles in water. Optical switching of the assembly and disassembly is realized by alternating visible and UV irradiation, which causes the isomerization of the azo groups, thus affecting their complexation with the CDs.  相似文献   

20.
To investigate the effect of content of polyether (F400) grafted on the properties of polysiloxane amphiphiles, polyether was grafted on the polysiloxane by hydrosilylation reaction with H2PtCl6 catalyst. The modified polysiloxanes were divided into two types; moreover, the ratio of polyether and polysiloxane was 1:1 or 1:2. The first one was similar to the conventional surfactant structure that is BA polysiloxane amphiphile, which own one hydrophobic chain and one hydrophilic group. Another one was ABA polysiloxane amphiphile, which possess one hydrophobic chain and two hydrophilic groups at the terminal. In our work, we compared the property of modified polysiloxanes with various contents of polyether in aqueous solution at room temperature to analyze the impact of polyether content on siloxane surfactants. The conclusion was that siloxane amphiphiles possess good solubility, high surface activity, and excellent spreading property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号