首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a high order numerical boundary condition for compressible inviscid flows involving complex moving geometries. It is based on finite difference methods on fixed Cartesian meshes which pose a challenge that the moving boundaries intersect the grid lines in an arbitrary fashion. Our method is an extension of the so-called inverse Lax–Wendroff procedure proposed in [17] for conservation laws in static geometries. This procedure helps us obtain normal spatial derivatives at inflow boundaries from Lagrangian time derivatives and tangential derivatives by repeated use of the Euler equations. Together with high order extrapolation at outflow boundaries, we can impose accurate values of ghost points near the boundaries by a Taylor expansion. To maintain high order accuracy in time, we need some special time matching technique at the two intermediate Runge–Kutta stages. Numerical examples in one and two dimensions show that our boundary treatment is high order accurate for problems with smooth solutions. Our method also performs well for problems involving interactions between shocks and moving rigid bodies.  相似文献   

2.
In [20], two of the authors developed a high order accurate numerical boundary condition procedure for hyperbolic conservation laws, which allows the computation using high order finite difference schemes on Cartesian meshes to solve problems in arbitrary physical domains whose boundaries do not coincide with grid lines. This procedure is based on the so-called inverse Lax–Wendroff (ILW) procedure for inflow boundary conditions and high order extrapolation for outflow boundary conditions. However, the algebra of the ILW procedure is quite heavy for two dimensional (2D) hyperbolic systems, which makes it difficult to implement the procedure for order of accuracy higher than three. In this paper, we first discuss a simplified and improved implementation for this procedure, which uses the relatively complicated ILW procedure only for the evaluation of the first order normal derivatives. Fifth order WENO type extrapolation is used for all other derivatives, regardless of the direction of the local characteristics and the smoothness of the solution. This makes the implementation of a fifth order boundary treatment practical for 2D systems with source terms. For no-penetration boundary condition of compressible inviscid flows, a further simplification is discussed, in which the evaluation of the tangential derivatives involved in the ILW procedure is avoided. We test our simplified and improved boundary treatment for Euler equations with or without source terms representing chemical reactions in detonations. The results demonstrate the designed fifth order accuracy, stability, and good performance for problems involving complicated interactions between detonation/shock waves and solid boundaries.  相似文献   

3.
The simulation of sound generating flows in complex geometries requires accurate numerical methods that are non-dissipative and stable, and well-posed boundary conditions. A structured mesh approach is often desired for a higher-order discretization that better uses the provided grids, but at the expense of complex geometry capabilities relative to techniques for unstructured grids. One solution is to use an overset mesh-based discretization where locally structured meshes are globally assembled in an unstructured manner. This article discusses recent advancements in overset methods, also called Chimera methods, concerning boundary conditions, parallel methods for overset grid management, and stable and accurate interpolation between the grids. Several examples are given, some of which include moving grids.  相似文献   

4.
In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.  相似文献   

5.
This paper is devoted to the study of the Eulerian-Lagrangian method (ELM) for convection-diffusion equations on unstructured grids with or without accurate numerical integration. We first propose an efficient and accurate algorithm to calculate the integrals in the Eulerian-Lagrangian method. Our approach is based on an algorithm for finding the intersection of two non-matching grids. It has optimal algorithmic complexity and runs fast enough to make time-dependent velocity fields feasible. The evaluation of the integrals leads to increased precision and the unconditional stability. We demonstrate by numerical examples that the ELM with our proposed algorithm for accurate numerical integration has the following two features: firstly, it is much more accurate and more stable than the ones with traditional numerical integration techniques and secondly, the overall cost of the proposed method is comparable with the traditional ones.  相似文献   

6.
An accurate computational method based on the boundary integral formulation is presented for solving boundary value problems for Stokes and Darcy flows. The method also applies to problems where the equations are coupled across an interface through appropriate boundary conditions. The adopted technique consists of first reformulating the singular integrals for the fluid quantities as single and double layer potentials. Then the layer potentials are regularized and discretized using standard quadratures. As a final step, the leading term in the regularization error is eliminated in order to gain one more order of accuracy. The numerical examples demonstrate the increase of the convergence rate from first to second order and show a decrease in magnitude of the error. The coupled problems require the computation of the gradient of the Stokes velocity at the common interface. This boundary condition is also written as a combination of single and double layer potentials so that the same approach can be used to compute it accurately. Extensive numerical examples show the increased accuracy gained by the correction terms.  相似文献   

7.
为数值求解描述不同物质间相位分离现象的高阶非线性Cahn-Hilliard(C-H)方程,发展了一种基于局部加密纯无网格有限点集法(local refinement finite pointset method,LR-FPM).其构造过程为:1)将C-H方程中四阶导数降阶为两个二阶导数,连续应用基于Taylor展开和加权最小二乘法的FPM离散空间导数;2)对区域进行局部加密和采用五次样条核函数以提高数值精度;3)局部线性方程组求解中准确施加含高阶导数Neumann边值条件.随后,运用LR-FPM求解有解析解的一维/二维C-H方程,分析粒子均匀分布/非均匀分布以及局部粒子加密情况的误差和收敛阶,展示了LR-FPM较网格类算法在非均匀布点情况下的优点.最后,采用LR-FPM对无解析解的一维/二维C-H方程进行了数值预测,并与有限差分结果相比较.数值结果表明,LR-FPM方法具有较高的数值精度和收敛阶,比有限差分法更易数值实现,能够准确展现不同类型材料间相位分离非线性扩散现象随时间的演化过程.  相似文献   

8.
对吸气式高超声速飞行器而言,物面热流和摩阻的准确预测对飞行器设计及安全十分关键.介绍采用CFD准确预测气动力和气动热的方法,包括流动的控制方程、湍流模型及湍流的先进壁面函数边界条件,介绍流动的数值求解方法.对典型超声速层流和湍流流动的摩擦阻力和热流进行详细的验证与确认,考察CFD工具在使用先进壁面函数边界条件后,湍流计算的法向网格无关性能力.对设计的一种吸气式高超声速飞行器的气动力和气动热进行数值模拟,为飞行器的气动设计及热防护提供了可靠的数据.  相似文献   

9.
We present two methods for the rapid, high order accurate evaluation of integrals in potential theory on general, unbounded 3D regions. Our methods allow for direct calculation of derivatives of the integrals as well. One of the methods uses a fourth order compact stencil, and the other uses a nonstandard variant of Richardson extrapolation. Both methods involve calculation of discontinuities in high order derivatives of the integrals across the boundary of the integration region. The extrapolation method, in addition, involves correction for the discontinuities in truncation error. The number of operations required for the methods is essentially equal to twice the number of operations needed to solve Poisson’s equation on a regular grid. Both methods avoid problems associated with using quadrature methods to evaluate integrals with singular kernels. Numerical results are presented for experiments on a variety of geometries in free space.  相似文献   

10.
We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) collision model to simulate laminar flows in two-dimensions (2D). In order to simulate flows in an unbounded domain with the LBE method, we need to address two issues: stretched non-uniform mesh and inflow and outflow boundary conditions. We use the interpolated grid stretching method to address the need of non-uniform mesh. We demonstrate that various inflow and outflow boundary conditions can be easily and consistently realized with the MRT-LBE. The MRT-LBE with non-uniform stretched grids is first validated with a number of test cases: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past a cylinder in an unbounded domain. We use the LBE method to simulate the flow past two tandem cylinders in an unbounded domain with Re = 100. Our results agree well with existing ones. Through this work we demonstrate the effectiveness of the MRT-LBE method with grid stretching.  相似文献   

11.
In Smoothed Particle Hydrodynamics (SPH) methods for fluid flow, incompressibility may be imposed by a projection method with an artificial homogeneous Neumann boundary condition for the pressure Poisson equation. This is often inconsistent with physical conditions at solid walls and inflow and outflow boundaries. For this reason open-boundary flows have rarely been computed using SPH. In this work, we demonstrate that the artificial pressure boundary condition produces a numerical boundary layer that compromises the solution near boundaries. We resolve this problem by utilizing a “rotational pressure-correction scheme” with a consistent pressure boundary condition that relates the normal pressure gradient to the local vorticity. We show that this scheme computes the pressure and velocity accurately near open boundaries and solid objects, and extends the scope of SPH simulation beyond the usual periodic boundary conditions.  相似文献   

12.
重心Lagrange插值配点法求解二维双曲电报方程   总被引:1,自引:0,他引:1  
刘婷  马文涛 《计算物理》2016,33(3):341-348
提出一种求解二维双曲电报方程的高精度重心Lagrange插值配点法.采用重心Lagrange插值构造包含时间和空间变量的近似函数.在给定Chebyshev-Gauss-Lobatto节点上,将多变量重心Lagrange插值近似函数代入双曲电报方程及其定解条件,得到离散代数方程组.包含狄里克雷和诺依曼边界条件的数值算例表明,本文方法程序实现方便并具有高精度,可应用于求解高维问题.  相似文献   

13.
The purpose of this paper is to study and identify suitable outflow boundary conditions for the numerical simulation of viscous supersonic/hypersonic flow over blunt bodies, governed by the compressible Navier–Stokes equations, with an emphasis motivated primarily by the use of spectral methods without any filtering. The subsonic/supersonic composition of the outflow boundary requires a dual boundary treatment for well-posedness. All compatibility relations, modified to undertake the hyperbolic/parabolic behaviour of the governing equations, are used for the supersonic part of the outflow. Regarding the unknown downstream information in the subsonic region, different subsonic outflow conditions in the sense of the viscous blunt-body problem are examined. A verification procedure is conducted to make out the distinctive effect of each outflow condition on the solution. Detailed comparisons are performed to examine the accuracy and performance of the outflow conditions considered for two model geometries of different surface curvature variations. Numerical simulations indicate a noticeable influence of pressure from subsonic portion to supersonic portion of the boundary layer. It is demonstrated that two approaches for imposing subsonic outflow conditions namely (1) extrapolating all flow variables and (2) extrapolation of pressure along with using proper compatibility relations are more suitable than the others for accurate numerical simulation of viscous high-speed flows over blunt bodies using spectral collocation methods.  相似文献   

14.
方柱绕流大涡模拟   总被引:4,自引:0,他引:4  
采用有限体/有限元混合格式、非结构网格和大涡模拟方法求解可压缩的N-S方程,对Re=22 000的方柱绕流进行数值模拟,并对不同的边界条件进行详细的分析比较.通过对以往研究经验的总结和利用精细的边界条件,使得采用二阶精度的数值格式和较稀疏的网格仍然得到了令人满意的计算结果,甚至优于以往采用密网格的模拟结果.  相似文献   

15.
We present the Flowfield Dependent Variation (FDV) method for physical applications that have widely varying spatial and temporal scales. Our motivation is to develop a versatile numerical method that is accurate and stable in simulations with complex geometries and with wide variations in space and time scales. The use of a finite element formulation adds capabilities such as flexible grid geometries and exact enforcement of Neumann boundary conditions. While finite element schemes are used extensively by researchers solving computational fluid dynamics in many engineering fields, their use in space physics, astrophysical fluids and laboratory magnetohydrodynamic simulations with shocks has been predominantly overlooked. The FDV method is unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in these regimes. The first part of this paper concentrates on the presentation of our numerical method formulation for Newtonian and relativistic hydrodynamics. In the second part we present several standard simulation examples that test the method’s limitations and verify the FDV method. We show that our finite element formulation is stable and accurate for a range of both Mach numbers and Lorentz factors in one-dimensional test problems. We also present the converging/diverging nozzle which contains both incompressible and compressible flow in the flowfield over a range of subsonic and supersonic regions. We demonstrate the stability of our method and the accuracy by comparison with the results of other methods including the finite difference Total Variation Diminishing method. We explore the use of FDV for both non-relativistic and relativistic fluids (hydrodynamics) with strong shocks in order to establish the effectiveness in future applications of this method in astrophysical and laboratory plasma environments.  相似文献   

16.
A method for generating three-dimensional, time-dependent turbulent inflow data for simulations of complex spatially developing boundary layers is described. The approach is to extract instantaneous planes of velocity data from an auxiliary simulation of a zero pressure gradient boundary layer. The auxiliary simulation is also spatially developing, but generates its own inflow conditions through a sequence of operations where the velocity field at a downstream station is rescaled and re-introduced at the inlet. This procedure is essentially a variant of the Spalart method, optimized so that an existing inflow–outflow code can be converted to an inflow-generation device through the addition of one simple subroutine. The proposed method is shown to produce a realistic turbulent boundary layer which yields statistics that are in good agreement with both experimental data and results from direct simulations. The method is used to provide inflow conditions for a large eddy simulation (LES) of a spatially evolving boundary layer spanning a momentum thickness Reynolds number interval of 1530–2150. The results from the LES calculation are compared with those from other simulations that make use of more approximate inflow conditions. When compared with the approximate inflow generation techniques, the proposed method is shown to be highly accurate, with little or no adjustment of the solution near the inlet boundary. In contrast, the other methods surveyed produce a transient near the inlet that persists several boundary layer thicknesses downstream. Lack of a transient when using the proposed method is significant since the adverse effects of inflow errors are typically minimized through a costly upstream elongation of the mesh. Extension of the method for non-zero pressure gradients is also discussed.  相似文献   

17.
The artificial compressibility method for the incompressible Navier–Stokes equations is revived as a high order accurate numerical method (fourth order in space and second order in time). Similar to the lattice Boltzmann method, the mesh spacing is linked to the Mach number. An accuracy higher than that of the lattice Boltzmann method is achieved by exploiting the asymptotic behavior of the solution of the artificial compressibility equations for small Mach numbers and the simple lattice structure. An easy method for accelerating the decay of acoustic waves, which deteriorate the quality of the numerical solution, and a simple cure for the checkerboard instability are proposed. The high performance of the scheme is demonstrated not only for the periodic boundary condition but also for the Dirichlet-type boundary condition.  相似文献   

18.
One-dimensional fractional anomalous sub-diffusion equations on an unbounded domain are considered in our work. Beginning with the derivation of the exact artificial boundary conditions, the original problem on an unbounded domain is converted into mainly solving an initial-boundary value problem on a finite computational domain. The main contribution of our work, as compared with the previous work, lies in the reduction of fractional differential equations on an unbounded domain by using artificial boundary conditions and construction of the corresponding finite difference scheme with the help of method of order reduction. The difficulty is the treatment of Neumann condition on the artificial boundary, which involves the time-fractional derivative operator. The stability and convergence of the scheme are proven using the discrete energy method. Two numerical examples clarify the effectiveness and accuracy of the proposed method.  相似文献   

19.
We develop a sixth order finite difference discretization strategy to solve the two dimensional Poisson equation, which is based on the fourth order compact discretization, multigrid method, Richardson extrapolation technique, and an operator based interpolation scheme. We use multigrid V-Cycle procedure to build our multiscale multigrid algorithm, which is similar to the full multigrid method (FMG). The multigrid computation yields fourth order accurate solution on both the fine grid and the coarse grid. A sixth order accurate coarse grid solution is computed by using the Richardson extrapolation technique. Then we apply our operator based interpolation scheme to compute sixth order accurate solution on the fine grid. Numerical experiments are conducted to show the solution accuracy and the computational efficiency of our new method, compared to Sun–Zhang’s sixth order Richardson extrapolation compact (REC) discretization strategy using Alternating Direction Implicit (ADI) method and the standard fourth order compact difference (FOC) scheme using a multigrid method.  相似文献   

20.

Improved Navier–Stokes characteristic boundary conditions (NSCBC) are formulated for the direct numerical simulations (DNS) of laminar and turbulent counterflow flame configurations with a compressible flow formulation. The new boundary scheme properly accounts for multi-dimensional flow effects and provides nonreflecting inflow and outflow conditions that maintain the mean imposed velocity and pressure, while substantially eliminating spurious acoustic wave reflections. Applications to various counterflow configurations demonstrate that the proposed boundary conditions yield accurate and robust solutions over a wide range of flow and scalar variables, allowing high fidelity in detailed numerical studies of turbulent counterflow flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号