首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Substituent effects on the energies of electronic transitions (ETs) between the triplet excited and ground states of gem-diphenyltrimethylenemethane biradicals (32a) were explored by using thermoluminescence (TL) spectroscopy and density functional theory (DFT) including time-dependent (TD) DFT. Linear free energy (Hammett) analyses of TL energies of a variety of para-substituted aryl derivatives of 32* gave reasonable correlations with the substituent constant, σ. The slope of Hammett plots of the data are nearly identical to one obtained from a similar analysis of the photoluminescence (PL) energies of the structurally-related 1,1-diarylethyl radicals (3*). The results suggest that TL of 32* and PL of 3* derive from a common diarylmethyl radical fluorophore. This interpretation is also supported by the DFT and TDDFT calculated electronic structures and ET energies of 32 and 3. Thermodynamic and kinetic analyses of the charge recombination (CR) process between 2+ and 1, which generates 32*, revealed that substituents not only alter the TL energies but also the TL intensities of 32*. The observations made in this effort demonstrate that 32* as well as 32 and 2+ have greatly twisted molecular geometries and highly localized electronic structures.  相似文献   

18.
19.
20.
DFT calculations have been carried out for 2-, 3- and 4-methoxybenzyl alcohol radical cations (1+, 3+ and 4+, respectively) and the α-methyl derivatives 2+ and 5+ using the UB3LYP/6-31G(d) method. The theoretical results have been compared with the experimental rate constants for deprotonation of 1+-5+ under acidic and basic conditions. In acidic solution, the decay of 1+-5+ proceeds by cleavage of the C-H bond, while in the presence of OH all the radical cations undergo deprotonation from the α-OH group. This pH-dependent change in mechanism has been interpreted qualitatively in terms of simple frontier molecular orbital theory. The OH induced α-O-H deprotonation is consistent with a charge controlled reaction, whereas the C-H deprotonation, observed when the base is H2O, appears to be affected by frontier orbital interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号