首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hf(2mol%):Fe(0.05wt%):LiNbO3 crystals with various [Li]/[Nb] ratios of 0.94, 1.05, 1.2 and 1.38 have been grown. The photorefractive resistant ability increases with the accretion of [Li]/[Nb] ratio. When the ratio of [Li]/[Nb] is 1.20 or 1.38, the OH absorption band shifts to about 3477cm‐1. The mechanisms of the photorefractive resistant ability increase and the absorption band shift have been discussed. The exponential gain coefficient (Γ) of the crystals was measured with two‐beam coupling method and the effective charge carrier concentration (Neff) was calculated. The results show that Γ and Neff increase with the accretion of [Li]/[Nb] ratio. The temperature effect of codoped Hf:Fe:LiNbO3 crystals was also studied, it was found that the exponential gain coefficient increase dramatically at about 55°C, 70°C and 110°C, this is due to the inner electric field which is resulted from structure phase change. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/24I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed.  相似文献   

3.
Hf:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios ([Li]/[Nb]=0.94, 1.05, 1.20) in melt. The defect structure and location of doped ions were analyzed by the UV‐visible absorption spectra. The optical damage resistance of Hf:Fe:LiNbO3 crystals was investigated by the photoinduced birefringence change and the transmitted light spot distortion method. The results show that the optical damage resistance ability of Hf:Fe:LiNbO3 crystals decreases with the increase of the [Li]/[Nb] ratio. The dependence of the optical damage resistance of Hf:Fe:LiNbO3 crystals on the defect structure is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Near‐stoichiometric Mn:Fe:LiNbO3 crystals doped with various concentration of ZrO2 were grown by top seed solution growth (TSSG) method in the air atmosphere. The Zr concentration in the crystal was determined by inductively coupled plasma optical emission spectrometer. The defect structures were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of vibration peak at 3466 cm‐1 in infrared spectra manifested that Li/Nb ratio in crystals approached to stoichiometric proportion. The fundamental absorption edge represented continuous red‐shift which was discrepancy with congruent doped LiNbO3 crystals showed that doping ions possessed different location mechanism. The light‐induced scattering of the doped stoichiometric LiNbO3crystals were quantitatively scaled via incident exposure energy. The results demonstrated that Zr(2 mol%):Mn:Fe:LiNbO3 crystal had the weakest light‐induced scattering and the mechanism related to their defect structures was discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Neodymium (Nd) doped lutetium gallium garnet (Nd:Lu3Ga5O12, Nd:LuGG) single crystal was successfully grown by the optical floating-zone method for the first time to our knowledge. Its absorption and luminescence spectra at room temperature were measured. By using the J–O theory, the spectral parameters of Nd:LuGG were calculated, which indicated that Nd:LuGG should possess comparable and even better laser properties than Nd:YAG. The maximum output power of 855 mW at 1062 nm was achieved with slope efficiency of 23.4% under a pump power of 5.2 W, and optical conversion efficiency of 16.4%. All the results show that Nd:LuGG is a potential laser material.  相似文献   

6.
Polycrystalline Bi2Te3 nanowires were prepared by a hydrothermal method that involved inducing the nucleation of Bi atoms reduced from BiCl3 on the surface of Te nanowires, which served as sacrificial templates. A Bi–Te alloy is formed by the interdiffusion of Bi and Te atoms at the boundary between the two metals. The Bi2Te3 nanowires synthesized in this study had a length of 3–5 μm, which is the same length as that of the Te nanowires, and a diameter of 300–500 nm, which is greater than that of the Te nanowires. The experimental results indicated that volume expansion of the Bi2Te3 nanowires was a result of the interdiffusion of Bi and Te atoms when Bi was alloyed on the surface of the Te nanowires. The morphologies of Bi2Te3 are strongly dependent on the reaction conditions such as the temperature and the type and concentration of the reducing agent. The morphologies, crystalline structure and physical properties of the product were analyzed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS).  相似文献   

7.
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V.  相似文献   

8.
9.
The possibility of AlN growth using Li–Al–N solvent was investigated. Based on theoretical prediction, we selected Li3N as a suitable nitrogen source for AlN growth. First, vapor phase epitaxy using Li3N and Al as source materials was performed to confirm the following reaction on the growth surface: Li3N+Al=AlN+3Li. The results suggest that the reaction proceeds to form AlN on the substrate under appropriate conditions. Next, AlN growth using Li–Al–N solvent was carried out. The Li–Al–N solvent was prepared by annealing of mixtures composed of Li3N and Al. The results imply that AlN was formed under an Al-rich condition. Moreover, it was found that Li was swept out from AlN grains during growth. The results suggest that AlN growth using Li–Al–N solvent might be a key technology to obtain an AlN crystal boule.  相似文献   

10.
We investigated the scintillation properties of Cs2LiGdCl6:Ce3+ as a function of the Ce concentration. X-ray excited luminescence spectra of the scintillation material showed broad emission bands between 360 and 460 nm, with two overlapping peaks, due to the d→f transitions on Ce3+ ions. The samples provide good scintillation results. The energy resolution was found to be 5.0% (FWHM) at 662 keV for 10% Ce sample. Under γ-ray excitation, Cs2LiGdCl6:Ce3+ showed three exponential decay time components of about 130–200 ns decay time constant. The light output of the investigated samples was 20,000 photons/MeV for a 10% Ce concentration. The light output deviation from the linear response is within 7% between the energy range of 31 and 1333 keV. Overall, the scintillation properties confirm that Cs2LiGdCl6:Ce3+ single crystal is a promising candidate for medical imaging and radiation detection.  相似文献   

11.
Near-stoichiometric LiTaO3 (SLT) and Zn-doped near-stoichiometric LiTaO3 (Zn:SLT) crystals with 10–15 mm in diameter and 10 mm in length were grown by using TSSG technique with K2O as the flux. The effect of adding amount of K2O was discussed in the growing process. The crystals were characterized by inductively coupled plasma-optical emission (ICP-OES), X-ray diffraction (XRD) and differential thermal analysis (DTA). The lattice constants of Zn:SLT were smaller than those of SLT and Curie temperature was higher than that of SLT. It was found that Zn doping is an efficient way to improve the optical damage resistance ability of SLT crystal. Compared with SLT crystal, Zn:SLT exhibited a much higher optical damage threshold, more than 500 MW/cm2, which was attributed to Zn self-compensated effect that formed the charge compensated complexes, (ZnTa)3−–3(ZnLi)+ in SLT crystal.  相似文献   

12.
In:Fe:Cu:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios of 0.946, 1.050, 1.200, and 1.380 in melt. Based on the ICP‐AES (inductively coupled plasma atomic emission spectrometry) analyzed results, the chemical formula of the triple‐doped In:Fe:Cu:LiNbO3 crystals were obtained. It can be seen that the near‐stoichiometric ratio value is between 1.050 and 1.200 for our samples. The optical damage resistance of In:Fe:Cu:LiNbO3 crystals was characterized by changes in light‐induced birefringence and it increases with the increasing of [Li]/[Nb] ratios. The dependence of the optical damage resistance on the defect structure of In:Fe:Cu:LiNbO3 crystals is discussed in detail based on the obtained chemical formulas. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Lithium niobate (LiNbO3) crystals doped with Fe and Fe:Mn were grown by Czochralski technique. The doping concentrations of Fe and Mn were optimized. Transmission studies reveal broad absorption band centered at 488 nm. The UV cutoff observed for Fe doped LiNbO3 is 358 nm whereas for Fe:Mn codoped LiNbO3 is 352 nm. This decrease in UV cutoff for Fe and Mn codoped LiNbO3 compared to only Fe doped LiNbO3 is due to the increase in Li/Nb ratio. Optical homogeneity was assessed using conoscopy and birefringence interferometry. Dark and photo conductivity measurements prove that LiNbO3 is a negative photo conducting material. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This article reports on the growth of single crystal Sn3O4 nanobelts and SnO by a carbothermal reduction process in two different regions of a furnace tube. Even though intermediate tin oxide compounds (Sn3O4) have been observed experimentally, the study of structures based on them is a challenging task. Characterization data allowed us to propose that Sn3O4 nanobelts grew by vapor–solid mechanism while SnO grew by self-catalyst vapor–liquid–solid mechanism. Electrical measurements of a single Sn3O4 nanobelt were performed at different temperatures, revealing undoped semiconductor characteristics.  相似文献   

15.
The growth of C60 nanowhiskers (C60NWs) prepared by a modified liquid–liquid interfacial precipitation method is investigated, focusing on the effect of solvent ratio and water content in the C60–toluene–isopropyl alcohol (IPA) solution system. The precipitation of C60NWs was markedly influenced by the solvent ratio of toluene to IPA, and the C60NWs were found to grow longer above a critical diameter (Dc), which depends on the solvent ratio. The addition of a small amount of H2O to the C60–toluene–IPA solution promoted the growth of C60NWs. This catalytic effect of water on the growth of C60NWs was confirmed also by the experiment using heavy water (D2O) and by the decrease of growth activation energy of C60NWs with increase of H2O content in the C60–toluene–IPA solution.  相似文献   

16.
Pr1%:K(Y1−xLux)3F10 (x=0, 0.2, 0.4) single crystals were grown by the μ-PD method. All the grown crystals were greenish and perfectly transparent without any inclusions or cracks. Radioluminescence spectra and decay kinetics of the Pr1%:K(Y,Lu)3F10 crystals were measured. Emission from the Pr3+ 5d–4f transition, peaking around 260 nm and of the decay time of around 22 ns were observed. The 5d–4f emission intensities of the Pr1%:K(Y,Lu)3F10 crystals were higher than that of the standard BGO scintillator.  相似文献   

17.
Magnetite particles were synthesized through a process including dissolution of Fe(OH)2 and precipitation of an oxidized phase in aqueous solution. The Fe3+ ion was added at the beginning of the synthesis to accelerate the formation of magnetite, control the particle size and improve the monodispersibility. It was found that the addition of Fe3+ ion affected the nucleation and the formation of magnetite particles significantly. Magnetite nanoparticles with small particle size and narrow size distribution were obtained. Furthermore, high magnetic properties were obtained in small particle size. The particle size and magnetic properties increased through the increase of Fe2+/Fe3+ ratio.  相似文献   

18.
As described by Kutoglu (1976 [16]), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.  相似文献   

19.
Melting and crystallization scenarios of barium tetraborate BaB4O7 (BaO·2B2O3) are studied in situ by Raman spectroscopy. It is shown that the scenario depends on the temperature–time history of melt. Crystallization conditions of the beta modification of barium tetraborate (β-BaB4O7) from a stoichiometric glass structure BaO·2B2O3 were investigated.  相似文献   

20.
Dielectric layer containing CoSi2 nanocrystals was directly fabricated by plasma-enhanced atomic layer deposition using CoCp2 and NH3 plasma mixed with SiH4 without annealing process. Synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy results confirmed the formation of CoSi2 nanocrystal. The gate stack composed of dielectric layer containing CoSi2 nanocrystals with ALD HfO2 capping layer together with Ru metal gate was analyzed by capacitance–voltage (CV) measurement. Large hysteresis of CV curves indicated charge trap effects of CoSi2 nanocrystals. The current process provides simple route for the fabrication of nanocrystal memory compatible with the current Si device unit processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号