首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinitroxyl complexes of platinum,cis-PtII(APO)2X2, where APO is 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, were obtained by either a direct reaction of APO with K2PtX4 (X=Cl or I) or a replacement of iodide ligands incis-PtII(APO)2I2 by nitrate and oxalate ligands. The interation of water-solublecis-PtII(APO)2(NO3)2 with, ox spleen DNA resulted in platinated DNA with a degree of modification (r)-7 times lower than that obtained withcis-PtII(NH3)2Cl2 (cisplatin). Melting pointT m, melting range ΔT, and the degree of hyperchromicity ΔH for platinated DNA showed that for equalr values, thecis-PtII(APO)2—DNA adducts increase heterogeneity in the DNA structure much more effectively than thecis-PtII(NH3)2—DNA adducts. Poor platinating activity, substantial disturbance of the DNA structure, as well as low toxicity and moderate antitumor activity ofcis-PtII(APO)2X2 complexes are probably explained by steric hindrances caused by two bulky APO ligands. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1640–1644, August, 1998.  相似文献   

2.
The oxidation of lower aliphatic alcohols C1–C4 with dioxygen to form the corresponding carbonyl compounds in the presence of the PdII tetraaqua complexes and FeII-FeIII aqua ions in an aqueous medium was studied at 40–80 °C. The introduction of an aromatic compound (acetophenone, benzonitrile, phenylacetonitrile, o-cyanotoluene, nitrobenzene) and FeII aqua ion instead of the FeIII aqua ion into the reaction system increases substantially the catalytic activity and the yield of the carbonyl compound. The key role of the Pd species in the intermediate oxidation state stabilized by the aromatic additive in the catalytic cycle of alcohol oxidation with dioxygen to the carbonyl compound was shown. An increase in the kinetic isotope effect with an increase in the temperature of methanol oxidation indicates a change in the rate-determining step of alcohol oxidation with dioxygen in the presence of PdII-FeII-FeIII and the aromatic compound. At temperatures below 60 °C, the catalytically active palladium species are mainly formed upon the reduction of the PdII tetraaqua complex with the FeII aqua ion, whereas at higher temperatures the reaction between the alcohol and PdII predominates. The mechanism and kinetic equation of the process were proposed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 842–848, May, 2007.  相似文献   

3.

Poly(N-2-sulfoethylethylenimine) (SEPEI) with a degree of modification equal to 0.30, 0.58, and 0.74, cross-linked with diethylene glycol diglycidyl ether, demonstrates efficient sorption properties with respect to PtIV, PdII, and AuIII ions. The selectivity coefficient KPd/Au in a HCl solution with pH 0.8 decreases from 90 to 61, and the selectivity coefficient KPd/Pt in a HCl solution with pH 3.9 increases from 0.94 to 480 with an increasing degree of modification. A thiourea hydrochloric acid solution effectively removes metal ions; the desorption of PtIV, PdII, and AuIII from the SEPEI surface reaches 100, 96.9, and 83.8%, respectively.

  相似文献   

4.
A series of the M(L)Cl2 · nH2O and {M(L)}2(OAc)4 complexes (M = NiII, CoII, and CuII; L is 3- and 4-(2-pyridyl)-1,3-benzothiazole) were synthesized by the reaction of L with MX2 · nH2O (X = Cl, OAc) in ethanol. The molecular and crystal structures of the CuL2(OAc)4 binuclear complex (L is 4-(2-pyridyl)benzothiazole) were determined by X-ray diffraction analysis. The copper atoms have a distorted tetragonal bipyramidal environment and are coordinated to the nitrogen atom of the pyridine moiety of the ligand and to two oxygen atoms of the bridging acetate ligands. The Cu-Cu distance is 2.6129(9) Å. The electrochemical behavior of the synthesized ligands and complexes was studied using the cyclic voltammetry and rotating disk electrode techniques in DMF solutions (0.1 M Bu4NClO4). The primary reduction of all the complexes under study is directed to the metal.  相似文献   

5.
Reduction of the binuclear PdII complexes Pd2(OCOR)2(o-CH2C6H4—NO)2 (1) and Pd2(OCOR)2(o-PhN—C6H4—NO)2 (2) (where R = Me, CF3, But, or Ph) by sodium borohydride, an ethanolic solution of KOH, or molecular hydrogen was examined. The first stage of reduction was demonstrated to afford metallic palladium and aromatic amines, viz., o-toluidine o-Me—C6H4—NH2 from complex 1 and aniline Ph—NH2 from complex 2. The reactions with molecular hydrogen involve deeper stages to yield cyclic ketones (o-methylcyclohexanone and cyclohexanone) and then cycloalkanes (methylcyclohexane and cyclohexane, respectively). The latter reactions are accompanied by elimination of N2. The mechanism of reduction of complexes 1 and 2 with molecular hydrogen was proposed.  相似文献   

6.
The reactions of 2-(2-pyridyl)benzothiazole (1) with MX2·nH2O salts (M = NiII, CoII, or CuII; X = Cl or ClO4; n = 0–2) in EtOH afforded the corresponding complexes. Depending on the nature of the counterion in the starting metal salt, the reactions give compounds of composition M(1)Cl2·nH2O or Cu(1)2(ClO4)2·H2O. The molecular and crystal structure of the CuII(1)2(ClO4)2·H2O complex was established by X-ray diffraction. The copper atom in this complex has a distorted tetragonal-pyramidal ligand environment and is coordinated by four nitrogen atoms of two ligand molecules and one water molecule. Electrochemical study of the ligand and the resulting complexes by cyclic voltammetry and at a rotating disk electrode demonstrated that ligand 1 stabilizes reduced forms of complexes containing Ni, Co, or Cu atoms in the oxidation state +1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1738–1744, October, 2006.  相似文献   

7.
The CrVI oxidation of HgI in an aqueous acid medium occurs to a modest extent only in presence of PdII and in H2SO4 above ca. 0.20 mol dm–3. The reaction is first order in [CrVI] in the presence of PdII catalyst. The order in [HgI] is less than unity, whereas that in [PdII] is unity. Increase in [H2SO4] accelerates the reaction rate. The added products, CrIII and HgII, do not significantly effect the reaction rate. A mechanism involving HCrO4 and PdCl+ as the reactive species of oxidant and catalyst respectively, is proposed. The reaction constants involved in the mechanism have been evaluated.  相似文献   

8.
Complexes formed by interaction of trans-diamminepalladium(II) chloride (PdII) with 1,6-hexanediamine (HDA) and nitrogen bases (B) (imidazole derivatives or methylamine) are investigated at 25°C and 0.1?mol?L?1 NaNO3 ionic strength using potentiometric measurements. The stability constants of all possible mononuclear and binuclear complexes were determined. The concentration distribution diagram of the binuclear PdII-HDA-Im derivative reveals the complexes predominating in the physiological pH range; the reaction of the binuclear PdII-HDA-PdII with imidazole derivatives is quite feasible.  相似文献   

9.
New PdI and Pd0 carbonyl bromide complexes co-existing in the same crystal were synthesized and studied by X-ray diffraction analysis. The crystals consist of dimeric complex anions composed of the central Pd(μ-CO)2Pd fragment and four partially disordered terminal ligands (CO and Br). The complexes were characterized by IR, ESR, and X-ray photoelectron spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1349–1355, June, 2005.  相似文献   

10.
Summary The electronic and vibrational spectra of NiII and PdII complexes with thiobenzamide, L, are discussed. L acts as a sulphur donor ligand. The PdII compounds and (NiL4)(ClO4)2 are square planar. PdL2Cl2 has acis-structure, while PdL2X2 (X=Br or I) istrans; NiL4Cl2 istrans-octahedral. The i.r. bands due to(M.S) and(MX) have been assigned. The influence of the anions on the properties of the complexes, both in solution and in the solid state, is discussed.  相似文献   

11.
The complex Pd(μ-OOCMe)4Cu(OH2) · 2Pd3(μ-OOCMe)6 was synthesized and characterized by X-ray crystallography. In the heterometallic moiety of this complex, the PdII and CuII atoms are at an extraordinary short distance (2.521(3) Å). DFT quantum-chemical calculations of the geometric and electronic structure of a series of heterobinuclear paddlewheel complexes PdIIMII(μ-OOCMe)4L (M = ZnII, NiII, CuII, CoII, FeII; L = OH2 and NCH) and their formate analogues PdIIMII(μ-OOCH)4L (M = ZnII, NiII, FeII) showed that the extraordinary short Pd?M distance in all these complexes is caused only by the tightening effect of carboxylate bridges rather than by the metal-metal bond. The direct Pd-M interaction becomes possible only after removal of electrons from the antibonding orbitals and formation of oxidized complexes of the [PdIII(μ-OOCMe)4NiIII]2+ type.  相似文献   

12.
Treatment of [M(AMP)Cl2] (M = PtII, PdII; AMP = 2-aminomethylpyridine) with 1 mole of AgX (X = ClO4, BF4, PF6) in dmso yields [M(AMP)(dmso)Cl]X. Single crystal X-ray structure determinations of the PdII and PtII complexes indicate that dmso is S-bondedtrans to the pyridyl ring in both complexes. (2-Aminomethylpyridine)chloro(dimethylsulphoxide-S) palladium(II) tetrafluoroborate.  相似文献   

13.
Summary Catalysis of the CeIV-allyl alcohol (AA) reaction in acid solution depends both on the of rate enhancement and product distribution on the catalyst used: OsVIII results mainly in acrolein, whereas PdII gives acrylic acid. The rate laws in the two cases also differ:viz., Equations 1 and 2K1 is the equilibrium constant of formation of the OsVIII-allyl alcohol complex and k1 is the rate constant of its oxidation by CeIV; K2 is the equilibrium constant for the formation of the CeIV-PdII-allyl alcohol complex and k2 is its rate constant of decomposition. Rate = K1k1[CeIV][AA][OsVIII]/(1+K1[AA]) (1) Rate = K1k1[CeIV][PdII]/(1+K2[CeIV]) (2)While OsVIII is effective in H2SO4 solution, aqueous HClO4 is needed for PdII. Both reactions proceed through formation of catalyst-allyl alcohol complexes with participation of free radicals. The details of these observations are discussed.  相似文献   

14.
Kinetics of hydrogen peroxide decomposition in the presence of the tetraaquapalladium(II) complex in an aqueous solution at 40–70 °C was studied. The reaction rate is the first order with respect to the concentration of both PdII and H2O2 and the negative first order with respect to perchloric acid. Using free radicals traps, the reaction mechanism was found to differ from the traditional free-radical mechanism known for d-metal aqua ions and proceeds without generation of hydroxyl radicals. The kinetic data obtained suggest a mechanism involving the formation of an intermediate palladium complex with oxygen. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1077–1082, May, 2005.  相似文献   

15.
Each of two square-planar PdII ions in the title compound, [Pd2Cl4(μ-Haet-S)2]·2H2O (Haet = 2-ammonio­ethane­thiol­ate, C2H7NS), which was obtained by rearrangement of [Pd2{Pd(aet-N,S)2}4]4+ in acidic solution, is coordinated by two bridging S atoms from two Haet ligands and by two terminal Cl atoms, forming the dinuclear structure. Since the complex is situated on a center of symmetry, the two monodentate Haet arms are located on opposite sides of the central Pd2S2 square plane, i.e. the present complex is the anti isomer. The S—C—C—N torsion angle is 177.3 (6)° and some intermolecular hydrogen bonds are observed.  相似文献   

16.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

17.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

18.
An X-ray structural study of the cobalt(ii) chloride complex with triphenyl-N-(2-pyrimidyl)phosphineimine has been performed (automatic diffractometer, Mo-–K , 2916 observed reflections, the heavy-atom method, the least squares method in anisotropicisotropic approximation toR=0.043). The crystals are monoclinic,a=15.979(6) Å,b=17.391(6) Å,c=14.976(6) Å, =104.21(2)°,V=4034(5) Å3,d calc=1.384 g cm–3,Z=4, space groupP21/c. The Co atom has a distorted tetrahedral coordination by two Cl atoms (2.268(2) Å and 2.278(3) Å) and two N atoms (2.030(4) Å and 2.025(5) Å) of the two pyrimidine heterocycles. The Cl-Co-Cl and N-Co-N bond angles are equal to 107.7(1)° and 123.4(2)°, respectively. Additional weak coordination of the Co atom by two N atoms of the imine groups [Co...N 2.982(4) Å and 3.045(4) Å] is also observed in the molecule of the complex, and this coordination changes the nearest environment of the Co atom to distorted octahedral coordination. The lengths of the phosphorus-imine P=N bonds are 1.596(6) Å and 1.585(6) Å. The results obtained are compared with previous structural investigations of similar complexes of transition metals with iminophosphoranes.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1203–1206, July, 1993.  相似文献   

19.
Platinum(II), palladium(II) and nickel(II) complexes with N-allyl-N′-pyrimidin-2-ylthiourea were synthesized in 1:1 and 1:2 [metal:ligand] stoichiometric ratios and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and by i.r., u.v.-vis., 1H- and 13C-n.m.r. and mass spectra. The 1H- and 13C- n.m.r. chemical shifts reveal coordination of one pyrimidine-N and sulphur atoms to PtII and PdII. The i.r. spectra indicate that the ligand behaves as a neutral monodentate towards NiII; coordinates via a pyrimidine-N and as a bidendate towards PdII and PtII coordinates via thione-S and a pyrimidine-N. The magnetic moments and electronic spectral data suggest a square-planar geometry for PtII and PdII complexes, a mixture of square-planar and tetrahedral geometries for the tetracoordinate NiII complex and octahedral for the six-coordinate one. The E.I. mass spectra of the complexes showed some isotope ion peaks of [M]+ and fragments containing metals; assignments of fragments containing metal ions were supported by the appearance of their peaks among isotope clusters.  相似文献   

20.
Summary The kinetics of oxidation of amines (EtNH2, Et2NH, Et3N) and aminoalcohols [H2NCH2CH2OH, H2N(CH2)3OH, (CH2CH2OH)2NH, (CH2CH2OH)3N] by N-bromosuccinimide (NBS) have been studied in aqueous HClO4 with PdCl2 as catalyst, and in the presence of Hg(OAc)2 to ensure oxidation by pure NBS. The order of reaction with respect to NBS was unity, however, an increase in [NBS]0 resulted in a decrease in the rate constant. The rate was directly proportional to [PdII] for the aminoalcohols while for EtNH2 the rate was proportional to k + k[PdII] (where k and k are rate constants for the uncatalysed and catalysed paths, respectively). Retarding effects for HClO4, succinimide, Cl and AcOH on the rate of oxidation were observed. The kinetic data support the formation of [PdII-A] and [PdII-(A)2] complexes (where A represents amine or aminoalcohol). A mechanism, consistent with the observed kinetic data, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号