首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To predict turbulence in porous media, a new approach is discussed. By double (both volume and Reynolds) averaging Navier–Stokes equations, there appear three unknown covariant terms in the momentum equation. They are namely the dispersive covariance, the macro-scale and the micro-scale Reynolds stresses, in the present study. For the macro-scale Reynolds stress, the TCL (two-component-limit) second moment closure is applied whereas the eddy viscosity models are applied to the other covariant terms: the Smagorinsky model and the one-equation eddy viscosity model, respectively for the dispersive covariance and the micro-scale Reynolds stress. The presently proposed model is evaluated in square rib array flows and porous wall channel flows with reasonable accuracy though further development is required.  相似文献   

2.
This work is dedicated to the modeling of gas–liquid flows in pipes. As a first step, a new two-layer model is proposed to deal with the stratified regime. The starting point is the isentropic Euler set of equations for each phase where the classical hydrostatic assumption is made for the liquid. The main difference with the models issued from the classical literature is that the liquid as well as the gas is assumed compressible. In that framework, an averaging process results in a five-equation system where the hydrostatic constraint has been used to define the interfacial pressure. Closure laws for the interfacial velocity and source terms such as mass and momentum transfer are provided following an entropy inequality. The resulting model is hyperbolic with non-conservative terms. Therefore, regarding the homogeneous part of the system, the definition and uniqueness of jump conditions is studied carefully and acquired. The nature of characteristic fields and the corresponding Riemann invariants are also detailed. Thus, one may build analytical solutions for the Riemann problem. In addition, positivity is obtained for heights and densities. The overall derivation deals with gas–liquid flows through rectangular channels, circular pipes with variable cross section and includes vapor–liquid flows.  相似文献   

3.
Most models for multiphase flows in a porous medium are based on a straightforward extension of Darcy’s law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy’s law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multiphase flows is applied to derive averaged equations and to examine the validity of the commonly used models. Closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in this length ratio. This approximation reveals the information of the length scale separation obscured during an averaging process and leads to an equation system similar to Darcy’s law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.  相似文献   

4.
A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy’s law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy’s law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang, D.Z., 2009. Ensemble Phase Averaged Equations for Multiphase Flows in Porous Media, Part 2: A General Theory. Int. J. Multiphase Flow 35, 640–649). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.  相似文献   

5.
An advanced second moment closure for rough wall turbulence is proposed. In contrast to previously proposed models relying on an empirical correlation based on equivalent sand grain roughness, the proposed model mathematically derives roughness effects by applying spatial and Reynolds averaging to the governing equations. The additional terms in the momentum equations are the drag force and inhomogeneous roughness density terms. The drag force term is modeled with respect to the plane porosity and plane hydraulic diameter. The two-component limit pressure-strain model is applied to the additional pressure-strain term, which is related to the external force terms. An evaluation of turbulence over surfaces with randomly distributed semi-spheres confirms that the developed model reasonably reproduces the effects of roughness on mean velocity, Reynolds stress, and energy dissipation. Turbulence over rough surfaces of marine paint is also simulated to assess the predictive performance for higher Reynolds number turbulent flows over real rough surfaces. The developed model successfully reproduces the dependence of the Reynolds number on roughness effects. Moreover, qualitative agreement of the skin friction increase with the experimental data is confirmed.  相似文献   

6.
The governing equations for depth-averaged turbulent flow are presented in both the primitive variable and streamfunction–vorticity forms. Finite element formulations are presented, with special emphasis on the handling of bottom stress terms and spatially varying eddy viscosity. The primitive variable formulation is found to be preferable because of its flexibility in handling spatial variation in viscosity, variability in water surface elevations, and inflow and outflow boundaries. The substantial reduction in computational effort afforded by the streamfunction–vorticity formulation is found not to be sufficient to recommend its use for general depth-averaged flows. For those flows in which the surface can be approximated as a fixed level surface, the streamfunction–vorticity form can produce results equivalent to the primitive variable form as long as turbulent viscosity can be estimated as a constant.  相似文献   

7.
In this second paper, the averaging rules presented in Part 1 are employed in order to develop a general macroscopic balance equation and particular equations for mass, mass of a component, momentum and energy, all of a phase in a porous medium domain. These balance equations involve averaged fluxes. Then macroscopic equations are developed for advective, dispersive and diffusive fluxes, all in terms of averaged state variables of the system. These are combined with the macroscopic balance equations to yield field equations that serve as the core of the mathematical models that describe the transport of extensive quantities in a porous medium domain. It is shown that the methodology of averaging leads to a better understanding of the effective stress concept employed in dealing with transport phenomena in deformable porous media.  相似文献   

8.
Spray flow calculations are usually based upon equations that have been developed by averaging droplet properties locally throughout the flow field. Presently, standard procedure for LES (large-eddy simulations) is to average these averaged equations once again to filter the short-length-scale fluctuations. In this paper, the theoretical foundations for the averaged spray equations are examined; then the volume-averaging process for LES and the volume-averaging process for two-phase flows are unified for the analysis of turbulent, two-phase flows. Comments are provided on the relationship between the averaging volume and the computational-cell volume. This paper provides generality to the weighting-function choice in the averaging process and precision to the definition of the volume over which the averaging is performed. New flux terms that result from the averaging process and appear in the governing averaged partial differential equations are identified and their modelling is discussed. Situations are identified where sufficient stratification of properties on the scale smaller than the averaging volume leads to the significance of these quantities. Evolution equations for averaged entropy and averaged vorticity are developed. The relationship amongst the curl of the average gas-phase velocity, the average of the gas-phase-velocity curl, and the rotation of the discrete droplets or particles is established. The needs and challenges for sub-grid modelling to account for small-vortex/droplet interactions are presented. Applications to spray combustion are discussed.  相似文献   

9.
This note examines the modeling of non-convective fluxes (e.g., stress, heat flux and others) as they appear in the general, unclosed form of the volume-averaged equations of multiphase flows. By appealing to the difference between slowly and rapidly varying quantities, it is shown that the natural closure of these terms leads to the use of a single, slowly-varying combined average flux, common to both phases, plus rapidly-varying local contributions for each phase. The result is general and only rests on the hypothesis that the spatial variation of the combined average flux is adequately described by a linear function of position within the averaging volume. No further hypotheses on the nature of the flow (e.g., about specific flow regimes) prove necessary. The result agrees with earlier ones obtained by ensemble averaging, is illustrated with the example of disperse flows and discussed in the light of some earlier and current literature. A very concise derivation of the general averaged balance equation is also given.  相似文献   

10.
We consider a general model of transient flow in media of random conductivity and storativity. The flow is driven by the spatially distributed source function (x, t) and the initial head distribution h 0(x). The function models sources and wells and can be deterministic, random or a sum of both. The deterministic source function corresponds to singularities of deterministic strength, whereas the random models the head boundary condition. In the latter case, is shown to be proportional to the hydraulic conductivity. The aim of the study is to analyze the feasibility of averaging the flow equations and of developing the mathematical model of average flow (AFM) without solving problems in detail. It is shown that the problem of averaging is reduced to deriving two constitutive equations. The first equation, the effective Darcy's law (EDL) stems from averaging Darcy's law at local scale. The second one is related to the medium ability to store a fluid and expresses the correlation between the storativity and head in terms of the mean head. Both relationships are required to be completely determined by the medium structure (conductivity and storativity statistical properties) and independent of the flow configuration (functions and h 0). We show that if one of the constitutive equations exists, the same is true respective to the second. This reduces the problem of averaging to the classic one of deriving the EDL. For steady flows the EDL is shown to exist for flows driven by sources (wells) of either deterministic flux or head boundary conditions. No EDL can be derived if both types of sources are present in the flow domain. For unsteady flows the EDL does not exist if the initial head correlates with the medium properties. For uncorrelated initial head distribution, its random residual (due to the measurement errors and scarcity of the data) has no impact on the EDL and is immaterial. For deterministic h 0, the only case for which the EDL exists is the flow by sources of deterministic discharge. For sources of given head boundary condition the EDL can be derived only for uniform initial head distribution. For all other cases, the EDL does not exist. The results of the study are not limited by usually adopted assumptions of weak heterogeneity and of stationarity of the formation random properties.  相似文献   

11.
Medium thickness plates resting on a periodic Winkler’s foundation are investigated. New averaged non-asymptotic models for those plates are proposed. These models are based on the tolerance averaging technique. The main feature of these models is that they describe the effect of period lengths on the overall behaviour of the plate. It is also shown that from governing equations of these models, equations of simplified averaged models (called asymptotic models) can be obtained. An additional interesting feature of the proposed models is that the equations describe also the effect of normal stress in the thickness direction.  相似文献   

12.
Numerical predictions with a differential Reynolds stress closure, which in its original formulation explicitly takes into account possible states of turbulence on the anisotropy-invariant map, are presented. Thus the influence of anisotropy of turbulence on the modeled terms in the governing equations for the Reynolds stresses is accounted for directly. The anisotropy invariant Reynolds stress model (AIRSM) is implemented and validated in different finite-volume codes. The standard wall-function approach is employed as initial step in order to predict simple and complex wall-bounded flows undergoing large separation. Despite the use of simple wall functions, the model performed satisfactory in predicting these flows. The predictions of the AIRSM were also compared with existing Reynolds stress models and it was found that the present model results in improved convergence compared with other models. Numerical issues involved in the implementation and application of the model are also addressed.  相似文献   

13.
Two-phase flow modeling has been under constant development for the past forty years. Actually there exists a hierarchy of models which extends from the homogeneous model valid for two-phase flows where the phases are strongly coupled to the two-fluid model valid for two-phase flows where the phases are a priori weakly coupled. However the latter model has been used extensively in computer codes because of its potential in handling many different physical situations.The two-fluid model is based on the balance equations for mass, momentum and energy, averaged in a certain sense and expressed for each phase and for the interface between the phases. The difficulty in using the two-fluid model stems from the closure relations needed to arrive at a complete set of partial differential equations describing the flow. These closure relations should supply the information lost during the averaging of the balance equations and should specify in particular the interactions of mass, momentum and energy between the phases. Another requirement for the interaction terms is that they should satisfy the interfacial balance equations. Some of these terms such as the added mass term or the lift force term do not depend on the interfacial area but some others do, such as the mass transfer term, the drag term or the heat flux term. It is then necessary to model the interfacial area in order to evaluate the corresponding fluxes. Another benefit resulting from the modeling of the interfacial area would be to replace the usual static flow pattern maps which specify the flow configuration by a dynamic follow-up of the flow pattern. All these reasons explain why so much effort has been put during the past twenty years on the modeling and measurement of the interfacial area in two-phase flows.This article contains two parts. The first one deals with the conceptual issues and has the following objectives:
    1.
    to give precise definitions of the interfacial area concentrations;
    2.
    to explain the origin of the interfacial area concentration transport equation suggested by M. Ishii in 1975;
    3.
    to explain some paradoxical behaviors encountered when calculating the interfacial area concentration transport velocity.
  相似文献   

14.
An interaction model considering the local stress on a particle surface is developed based on a volume averaging technique. With a scope to apply to turbulence modulation caused by particles of diameter comparable to the Kolmogorov length scale, grid width for resolving vortical structures outside the boundary layer of the particles is set to be close to the particle diameter. The interaction force in the volume-averaged momentum equation is modelled based on analytical solutions of two fundamental flows. For the uniform flow case, the nonlinear effect of the first-order term in a series expansion with respect to the particle Reynolds number is found to be essential for the anisotropic Eulerian distribution of the interaction force. For the shear flow case, the anisotropic distribution of the interaction force is also essential, and it is modelled based on the Stokes’s solution. Considering that the length scale of the averaging volume is determined to be comparable to the grid width and the particle diameter, the residual stress, which originates from the volume averaging of the nonlinear term in the momentum equation, is also modelled based on an undisturbed linear shear flow. According to the test simulation using the interaction force and residual stress models of the fundamental flows, the anisotropic interaction force model essentially improves the representation of the flow field and the mechanical work, and the effect of the residual stress is found to be reasonably reproduced by the present model.  相似文献   

15.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
In order to build a unified modelling for granular media by means of Eulerian averaged equations, it is necessary to study two contributions in the effective Cauchy stress tensor: the first one concerns solid and fluid matter, including contact and collisions between grains; the second one focuses on the random movements of grains and fluid, similar to Reynolds stress for turbulent flows. It is shown that the point of view of piecewise continuous media already used for two phase flows allows one to derive a constitutive equation for the first contribution, under the form of a partial differential equation. Similarly as for the Reynolds stress in turbulent flows, this equation cannot be written only in terms of averaged quantities without adequate approximations. The structure of the closed equation is discussed with respect to irreversible thermodynamics, and in connection with some already existing models. It is emphasised that numerical simulations by the discrete elements method can be used in order to validate these approximations, through numerical experiments statistically considered. Finally an extension of this approach to the second contribution of the effective Cauchy stress tensor is briefly discussed, showing how the modelling of both contributions have to be coupled.   相似文献   

17.
For complex turbulent flows, Reynolds stress closure modeling (RSCM) is the lowest level at which models can be developed with some fidelity to the governing Navier–Stokes equations. Citing computational burden, researchers have long sought to reduce the seven-equation RSCM to the so-called algebraic Reynolds stress model which involves solving only two evolution equations for turbulent kinetic energy and dissipation. In the past, reduction has been accomplished successfully in the weak-equilibrium limit of turbulence. In non-equilibrium turbulence, attempts at reduction have lacked mathematical rigor and have been based on ad hoc hypotheses resulting in less than adequate models.?In this work we undertake a formal (numerical) examination of the dynamical system of equations that constitute the Reynolds stress closure model to investigate the following questions. (i) When does the RSCM equation system formally permit reduced representation? (ii) What is the dimensionality (number of independent variables) of the permitted reduced system? (iii) How can one derive the reduced system (algebraic Reynolds stress model) from the full RSCM equations? Our analysis reveals that a lower-dimensional representation of the RSCM equations is possible not only in the equilibrium limit, but also in the slow-manifold stage of non-equilibrium turbulence. The degree of reduction depends on the type of mean-flow deformation and state of turbulence. We further develop two novel methods for deriving algebraic Reynolds stress models from RSCM equations in non-equilibrium turbulence. The present work is expected to play an important role in bringing much of the sophistication of the RSCM into the realm of two-equation algebraic Reynolds stress models. Another objective of this work is to place the other algebraic stress modeling efforts in the lower-dimensional modeling context. Received 19 November 1999 and accepted 3 August 2000  相似文献   

18.
Most explicit algebraic stress models are formulated for turbulent shear flows without accounting for external body force effects, such as the buoyant force. These models yield fairly good predictions of the turbulence field generated by mean shear. As for thermal turbulence generated by the buoyant force, the models fail to give satisfactory results. The reason is that the models do not explicitly account for buoyancy effects, which interact with the mean shear to enhance or suppress turbulent mixing. Since applicable, coupled differential equations have been developed describing these thermal turbulent fields, it is possible to develop corresponding explicit algebraic stress models using tensor representation theory. While the procedure to be followed has been employed previously, unique challenges arise in extending the procedure for developing the algebraic representations to turbulent buoyant flows. In this paper the development of an explicit algebraic stress model (EASM) is confined to the homogeneous buoyant shear flow case to illustrate the methodology needed to develop the proper polynomial representations. The derivation is based on the implicit formulation of the Reynolds stress anisotropy at buoyant equilibrium. A five-term representation is found to be necessary to account properly for the effect of the thermal field. Thus derived, external buoyancy effects are represented in the scalar coefficients of the basis tensors, and structural buoyancy effects are accounted for in additional terms in the stress anisotropy tensor. These terms will not vanish even in the absence of mean shear. The performance of the new EASM, together with a two-equation (2-Eq) model, the non-buoyant EASM of Gatski and Speziale (1993) and a full second-order model, is assessed against direct numerical simulations of homogeneous, buoyant shear flows at two different Richardson numbers representing weak and strong buoyancy effects. The calculations show that this five-term representation yields better results than the 2-Eq model and the EASM of Gatski and Speziale where buoyancy effects are not explicitly accounted for. Received 5 March 2001 and accepted 15 January 2002  相似文献   

19.
A modified Reynolds stress turbulence model for the pressure rate of strain can be derived for dispersed two-phase flows taking into account gas-particle interaction. The transport equations for the Reynolds stresses as well as the equation for the fluctuating pressure can be derived starting from the multiphase Navier–Stokes equations. The unknown pressure rate of strain correlation in the Reynolds stress equations is then modelled by considering the multiphase equation for the fluctuating pressure. This leads to a multiphase pressure rate of strain model. The extra particle interaction source terms occurring in the model for the pressure rate of strain can be constructed easily, with no noticeable extra computational cost. Eulerian–Lagrangian simulation results of a turbulent dispersed two-phase jet are presented to show the differences in results with and without the new two-way coupling terms.  相似文献   

20.
In this study, the Nervier–Stokes equations for incompressible flows, modified by the artificial compressibility method, are investigated numerically. To calculate the convective fluxes, a new high‐accuracy characteristics‐based (HACB) scheme is presented in this paper. Comparing the HACB scheme with the original characteristic‐based method, it is found that the new proposed scheme is more accurate and has faster convergence rate than the older one. The second order averaging scheme is used for estimating the viscose fluxes, and spatially discretized equations are integrated in time by an explicit fourth‐order Runge–Kutta scheme. The lid driven cavity flow and flow in channel with a backward facing step have been used as benchmark problems. It is shown that the obtained results using HACB scheme are in good agreement with the standard solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号