首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.  相似文献   

2.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

3.
The effect of alloying Pd with Ag on the hydrogenation of acetylene is examined by analyzing the chemisorption of all potential C(1) (atomic carbon, CH, methylene, and methyl) and C(2) (acetylene, vinyl, ethylene, ethyl, ethane, ethylidene, ethylidyne, and vinylidene) surface intermediates and atomic hydrogen along with the reaction energies for the elementary steps that produce these intermediates over Pd(111), Pd(75%)Ag(25%)/Pd(111), Pd(50%)Ag(50%)/Pd(111), and Ag(111) surfaces by using first-principle density functional theoretical (DFT) calculations. All of the calculations reported herein were performed at 25% surface coverage. The adsorption energies for all of the C(1) and C(2) intermediates decreased upon increasing the composition of Ag in the surface. Both geometric as well as electronic factors are responsible for the decreased adsorption strength. The modes of adsorption as well as the strengths of adsorption over the alloy surfaces in a number of cases were characteristically different than those found over pure Pd (111) and Ag (111). Adsorbates tend to minimize their interaction with the Ag atoms in the alloy surface. An electronic analysis of these surfaces shows that there is, in general, a shift in the occupied d-band states away from the Fermi level when Pd is alloyed with Ag. The s and p states also appear to contribute and may be responsible for small deviations from the Hammer-N?rskov model. The effect of alloying is more pronounced on the calculated reaction energies for different possible surface elementary reactions. Alloying Pd with Ag reduces the exothermicity (increases endothermicity) for bond-breaking reactions. This is consistent with experimental results that show a decrease in the decomposition products in moving from pure Pd to Pd-Ag alloys.(2-5) In addition, alloying increases the exothermicity of bond-forming reactions. Alloying therefore not only helps to suppress the unfavorable decomposition (bond-breaking) reaction rates but also helps to enhance the favorable hydrogenation (bond-forming) reaction rates.  相似文献   

4.
The conversion of acetylene to ethylidyne on Pt(111) has been comprehensively investigated using self-consistent periodic density functional theory. Geometries and energies for all of the intermediates involved as well as the conversion mechanism were analyzed. On Pt(111), the carbon atoms in the majority of stable C(2)H(x) (x = 1-4) intermediates prefer saturated sp(3) configurations with the missing H atoms substituted by the adjacent metal atoms. The most favorable conversion pathway for acetylene to ethylidyne is via a three-step reaction mechanism, acetylene → vinyl → vinylidene → ethylidyne. The first step, acetylene → vinyl, depends on the availability of surface H atoms: without preadsorbed H the reaction occurs via the initial disproportionation of acetylene, which resulted in adsorbed vinyl; with an abundance of preadsorbed H, acetylene could transform to vinyl via both the disproportionation and hydrogenation reactions. Conversions through initial dehydrogenation of acetylene and isomerizations of acetylene and vinyl are unfavorable due to high energy barriers along the relevant pathways. The conversion rate involving vinylidene as an intermediate is at least 100 times larger than that involving ethylidene.  相似文献   

5.
Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5–8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd3M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C–C and C–H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C–C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd3M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity.

Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior.  相似文献   

6.
A knowledge of the electronic properties of impurities at metal surfaces is of great value in the understanding of such important phenomena as chemisorption and surface segregation in alloys. We have adopted here a unified approach based on an Embedded Cluster model to study the properties of surface impurities. We have mainly concentrated on hydrogen impurities either adsorbed above the surface or incorporated into the bulk of metals. We have also considered the case of substitutional metal impurities at the surface of host metals.For hydrogen chemisorption we have considered such substrates as free-electron, transition and noble metals as well as bimetallic substrates composed of a single metal impurity in a host matrix or a metallic overlayer on a metal support. The electronic structure of the chemisorbed system is compared to photoemission data when available, from which interpretation of the details of the experimental spectra may be made. It is found that hydrogen adsorption on transition and noble metals results in the formation of a pair of bonding/antibonding resonances on either side of the metal d-band, while for hydrogen on free-electron metals a single hydrogen induced resonance is observed. One-electron energy differences between the H on jellium and H on metal systems are estimated and trends in such energies across the 3d and 4d transition series are compared to the trends in experimental chemisorption energies for H on these metals. The change in hydrogen chemisorption capacity of an inert substrate due to the introduction of chemically active impurities is investigated. The different properties of Pd overlayers with respect to Pd surfaces are also investigated. Interaction energies between adatoms on surfaces are estimated in order to predict the geometry of ordered structures on surfaces.One-electron heats of segregation for binary alloys are calculated. These show a strong solute surface segregation for noble metal impurities in group VIII metals, which is due to the higher d-band occupancy of the noble metal.  相似文献   

7.
The ethylene(C2H4)absorbs in molecular state on Ru (1010) surface stably below 200K. The dehydrogenated of ethylene occurs at 200K. The main product of the dehydrogenation of the absorbed ethylene is the acetylene (C2H2). After the dehydrogenation of the absorbed ethylene, the binding energies ofσCCandσCHbond have an increase of 0.5 and 1.1eV respectively. The C-C bonds of both ethylene and acetylene tilt in <0001> azimuth.  相似文献   

8.
Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.  相似文献   

9.
The modification of the electronic and chemical properties of Pt(111) surfaces by subsurface 3d transition metals was studied using density-functional theory. In each case investigated, the Pt surface d-band was broadened and lowered in energy by interactions with the subsurface 3d metals, resulting in weaker dissociative adsorption energies of hydrogen and oxygen on these surfaces. The magnitude of the decrease in adsorption energy was largest for the early 3d transition metals and smallest for the late 3d transition metals. In some cases, dissociative adsorption was calculated to be endothermic. The surfaces investigated in this study had no lateral strain in them, demonstrating that strain is not a necessary factor in the modification of bimetallic surface properties. The implications of these findings are discussed in the context of catalyst design, particularly for fuel cell electrocatalysts.  相似文献   

10.
Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys   总被引:1,自引:0,他引:1  
Self-consistent periodic density functional theory calculations (GGA-PW91) have been performed to study the adsorption of O and O(2) and the dissociation of O(2) on the (111) facets of ordered Pt(3)Co and Pt(3)Fe alloys and on monolayer Pt skins covering these two alloys. Results are compared with those obtained on two Pt(111) surfaces, one at the equilibrium lattice constant and the other laterally compressed by 2% to match the strain in the Pt alloys. The absolute magnitudes of the binding energies of O and O(2) follow the same order in the two alloy systems: Pt skin < compressed Pt(111) < Pt(111) < Pt(3)Co(111) or Pt(3)Fe(111). The reduced activity of the compressed Pt(111) and Pt skins for oxygen can be rationalized as being due to the shifting of the d-band center increasingly away from the Fermi level. We propose that an alleviation of poisoning by O and enhanced rates for reactions involving O may be some of the reasons why Pt skins are more active for the oxygen reduction reaction in low-temperature fuel cells. Finally, a linear correlation between the transition-state and final-state energies of O(2) dissociation on monometallic and bimetallic surfaces is revealed, pointing to a simple way to screen for improved cathode catalysts.  相似文献   

11.
 采用等体积浸渍法制备了 γ-Al2O3 负载的 Pt 和/或 Ni 双金属催化剂或单金属催化剂, 测定了它们的 CO 化学吸附量, 并在原位红外间歇反应装置上评价了其催化 1,3-环己二烯 (1,3-CHD) 的低温 (308 K) 加氢和脱氢性能. 结果表明, Pt-Ni/γ-Al2O3 催化剂性能优于 Pt/γ-Al2O3 或 Ni/γ-Al2O3. 结合密度泛函理论计算的不同催化剂上 1,3-CHD 的表面吸附能, 验证了具有较弱环烯烃吸附能的双金属催化剂加氢活性较高.  相似文献   

12.
In this work, quantum chemical methods were used to study propane conversion reactions on zeolites; these reactions included protolytic cracking, primary hydrogen exchange, secondary hydrogen exchange, and dehydrogenation reactions. The reactants, products, and transition-state structures were optimized at the B3LYP/6-31G level and the energies were calculated with CBS-QB3, a complete basis set composite energy method. The computed activation barriers were 62.1 and 62.6 kcal/mol for protolytic cracking through two different transition states, 30.4 kcal/mol for primary hydrogen exchange, 29.8 kcal/mol for secondary hydrogen exchange, and 76.7 kcal/mol for dehydrogenation reactions. The effects of basis set for the geometry optimization and zeolite acidity on the reaction barriers were also investigated. Adding extra polarization and diffuse functions for the geometry optimization did not affect the activation barriers obtained with the composite energy method. The largest difference in calculated activation barriers is within 1 kcal/mol. Reaction activation barriers do change as zeolite acidity changes, however. Linear relationships were found between activation barriers and zeolite deprotonation energies. Analytical expressions for each reaction were proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts, as long as the deprotonation energies are first acquired.  相似文献   

13.
SiO2负载的Au-Ni双金属催化剂在乙炔选择加氢反应中的应用   总被引:1,自引:0,他引:1  
负载型Au催化剂在乙炔选择加氢反应中表现出很高的乙烯选择性,但其转化率相对较低.通过添加第二种金属如Pd,Fe,Ag和Cu等,制备双金属催化剂是提高其在加氢反应中催化活性的一种非常有效的手段.其中Au-Pd双金属催化剂是最受关注的体系之一,Pd的加入可以非常显著地提高其催化乙炔选择加氢反应的活性.据文献报道,与Pd同一主族的Ni也具有较好的加氢活性.尽管与Pd相比,Ni很难与Au形成合金,但目前已有Au-Ni双金属催化剂在多种反应中表现出协同效应的报道,如水气变换、CO氧化以及芳香硝基化合物选择加氢等.因此,向Au催化剂中添加Ni也可能提高催化剂在乙炔选择加氢反应中的催化活性.因此,我们采用两步法制备了一系列SiO2负载的具有不同Ni:Au原子比的Au-Ni双金属催化剂,并将其用于乙炔选择加氢反应,发现Au-Ni双金属催化剂在该反应中表现出了显著的协同效应,其活性明显优于相应单金属催化剂的活性.尽管其乙烯选择性略低于单金属Au催化剂,但明显高于单金属Ni催化剂.通过调节还原温度和/或Ni:Au的比例,对催化剂的性能进行了优化.结果显示,当Ni:Au=0.5时,催化剂表现出最优的综合性能,即兼具较高的乙炔转化率和乙烯选择性.为了研究Au-Ni双金属催化剂中金属纳米粒子的结构、组成以及Au-Ni之间的相互作用,我们对催化剂进行了X射线衍射(XRD)、高分辨透射电镜(HRTEM)、能量散射谱(EDS)以及原位红外光谱(DRIFTS)表征.XRD和TEM结果显示,催化剂中的Au-Ni双金属纳米粒子都具有高分散和粒径均匀的特点.通过EDS分析,发现在Au-Ni双金属催化剂中的单个金属纳米粒子同时含有Au和Ni两种元素,尽管每个纳米粒子中Ni:Au的比例有差异.HRTEM结果发现,Au-Ni双金属纳米粒子的晶格间距介于Au(111)和Ni(111)的晶面间距之间,说明在Au-Ni双金属催化剂中有Au-Ni合金形成.原位DRIFTS结果显示,在Au-Ni双金属催化剂中,Au的存在促进了Ni的还原,说明Au与Ni之间存在紧密的相互作用.综上可见,Au和Ni在乙炔选择加氢反应中所表现出的协同效应主要归功于Au-Ni合金的形成,其中金属态Ni起主要的活性作用,而Au的存在则提高了催化剂的乙烯选择性.  相似文献   

14.
采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Pt/Ni双金属纳米溶胶.采用紫外-可见光谱(UV-Vis)、透射电子显微镜(TEM)对所合成的Pt/Ni双金属纳米溶胶进行了表征, 并系统研究了PVP用量、还原剂用量和浓度、双金属比例对该双金属纳米溶胶催化剂催化性能的影响.结果表明, 所制备的双金属纳米溶胶的平均粒径在2.0 nm左右, Pt/Ni双金属纳米溶胶的催化活性比Pt及Ni单金属纳米溶胶的高, 当Pt/Ni摩尔比为1:4时, 纳米溶胶的催化活性最高, 其活性值为16640 molH2·molPt-1·h-1.所制备的Pt/Ni双金属纳米溶胶催化剂具有很好的耐久性, 5次催化实验后该催化剂仍保持较高的催化活性.该双金属纳米溶胶催化NaBH4水解反应的活化能为48 kJ/mol.  相似文献   

15.
Reactivity of isobutane on zeolites: a first principles study   总被引:1,自引:0,他引:1  
In this work, ab initio and density functional theory methods are used to study isobutane protolytic cracking, primary hydrogen exchange, tertiary hydrogen exchange, and dehydrogenation reactions catalyzed by zeolites. The reactants, products, and transition-state structures are optimized at the B3LYP/6-31G* level, and the final energies are calculated using the CBS-QB3 composite energy method. The computed activation barriers are 52.3 kcal/mol for cracking, 29.4 kcal/mol for primary hydrogen exchange, 29.9 kcal/mol for tertiary hydrogen exchange, and 59.4 kcal/mol for dehydrogenation. The zeolite acidity effects on the reaction barriers are also investigated by changing the cluster terminal Si-H bond lengths. The analytical expressions between activation barriers and zeolite deprotonation energies for each reaction are proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts.  相似文献   

16.
The main reaction products resulting from the addition of atomic hydrogen to acetylene are shown to be ethylene, 1,3-butadiene, and benzene. The mechanism involves chain reactions of the vinyl and butadienyl radicals, which regenerate atomic hydrogen. Some of the rate parameters are estimated.  相似文献   

17.
简要总结了我们在C=C及C=O双键低温加氢双金属催化剂方面的最新研究成果.首先,我们以环己烯加氢为探针反应,证明了平行使用多种研究手段的重要性,包括单晶表面的基础研究与DFT计算,多晶表面的合成与表征,负载型催化剂的制备与性能测试等.其次,总结了双金属催化剂在其他加氢反应,如丙烯醛C=O双键的选择性加氢,苯的低温加氢,以及乙炔的选择性加氢等反应中的应用.最后,讨论了利用金属碳化物代替贵金属Pt以减少双金属催化剂中Pt用量的可能性.  相似文献   

18.
A series of bimetallic catalysts RhSnx/SiO2 (x = 0.4, 0.7, 0.9, and 1.4) were synthesized by the reaction of the monometallic catalyst Rh/SiO2 with Sn(n-butyl)4 under hydrogen. Various chemical and spectroscopic methods indicated that the metals present were fully reduced, and that tin atoms rest on the surface, very slightly increasing particle size and producing isolated rhodium sites. The catalytic reactions of propylene/hydrogen mixtures in the presence of these bimetallic catalysts are compared with those of the monometallic Rh/SiO2 catalysts. The mechanistically interesting reactions observed are those of carbon-carbon bond formation and cleavage. For the monometallic catalyst, olefin homologation and hydrogenolysis were observed, reactions which invoked the transfer of C1 fragments from one olefin to another. For the bimetallic catalysts, a marked increase in the selectivity for C6 products was observed. The presence of hydrogen is necessary to this reaction but selectivity for C6 is enhanced when hydrogen is in deficit with respect to propylene. Selectivity for C6 increases with the surface rhodium to tin, Rhs/Sn, ratio to a maximum at 0.9. Low temperature favors the formation of C6 and C2 products.  相似文献   

19.
In this work, the Nin (n = 2–10) nanoclusters were investigated to design new catalysts for the selective hydrogenation of acetylene. Our results show that among the Nin nanoclusters, the Ni6 nanocluster can be used as a catalyst in the reactions of hydrogenation. In the presence of the Ni6 nanocluster, the Ea of the forward step in the reaction of conversion of vinyl to ethylene was 21.21 kJ/mol lower than that of the reverse step in the reaction of conversion of acetylene to vinyl. Also, the Ea of the forward step in the reaction of conversion of ethyl to ethane was 96.59 kJ/mol higher than that of the reverse step in the reaction of conversion of ethylene to ethyl. According to the obtained results, the Ni6 nanocluster can selectively act in the hydrogenation of a mixture of acetylene and ethylene.  相似文献   

20.
The kinetic-energy dependence of the reactions of Mo(+) ((6)S) with methane has been studied using guided ion beam mass spectrometry. No exothermic reactions are observed in this system, as also found previously, but efficient dehydrogenation occurs at slightly elevated energies. At higher energies, MoH(+) dominates the product spectrum and MoC(+), MoCH(+), and MoCH(3)(+) are also observed. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energies (in eV) of D(0)(Mo(+)-C) = 4.55 +/- 0.19, D(0)(Mo(+)-CH) = 5.32 +/- 0.14, D(0)(Mo(+)-CH(2)) = 3.57 +/- 0.10, and D(0)(Mo(+)-CH(3)) = 1.57 +/- 0.09. The results for Mo(+) are compared with those for the first- and third-row transition-metal congeners, Cr(+) and W(+), and the differences in behavior and mechanism are discussed. Theoretical results are used to elucidate the geometric and electronic structures of all product ions as well as the complete potential-energy surface for reaction. The efficiency of the coupling between the sextet and quartet spin surfaces is also quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号