首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New complexes of Co2+, Ni2+, Cu2+ and Zn2+ with a recently synthesized Schiff base derived from 3,6-bis((aminoethyl)thio)pyridazine were applied for their simultaneous determination with artificial neural networks. The analytical data show the ratio of metal to ligand in all metal complexes is 1:1. The absorption spectra were evaluated with respect to Schiff base concentration, pH and time of the color formation reactions. It was found that at pH 10.0 and 60 min after mixing, the complexation reactions are completed and the colored complexes exhibited absorption bands in the wavelength range 300-500 nm. Spectral data was reduced using principal component analysis and subjected to artificial neural networks. The data obtained from synthetic mixtures of four metal ions were processed by principal component-feed forward neural networks (PCFFNNs) and principal component-radial basis function networks (PCRBFNs). Performances of the proposed methods were tested with regard to root mean square errors of prediction (RMSEP%), using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to simultaneous determination of Co2+, Ni2+, Cu2+ and Zn2+ in different vegetable, foodstuff and pharmaceutical product samples.  相似文献   

2.
The development of multianalyte sensing schemes by combining indicator-displacement assays with artificial neural network analysis (ANN) for the evaluation of calcium and citrate concentrations in flavored vodkas is presented. This work follows a previous report where an array-less approach was used for the analysis of unknown solutions containing the structurally similar analytes, tartrate and malate. Herein, a two component sensor suite consisting of a synthetic host and the commercially available complexometric dye, xylenol orange, was created. Differential UV-Visible spectral responses result for solutions containing various concentrations of calcium and citrate. The quantitation of the relative calcium and citrate concentrations in unknown mixtures of flavored vodka samples was determined through ANN analysis. The calcium and citrate concentrations in the flavored vodka samples provided by the sensor suite and the ANN methodology described here are compared to values reported by NMR of the same flavored vodkas. We expect that this multianalyte sensing scheme may have potential applications for the analysis of other complex fluids.  相似文献   

3.
Matrix solid-phase dispersion (MSPD) as a sample preparation method for the determination of two potential endocrine disruptors, linuron and diuron and their common metabolites, 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU), 1-(3,4-dichlorophenyl) urea (DCPU) and 3,4-dichloroaniline (3,4-DCA) in food commodities has been developed. The influence of the main factors on the extraction process yield was thoroughly evaluated. For that purpose, a 3(4–1) fractional factorial design in further combination with artificial neural networks (ANNs) was employed. The optimal networks found were afterwards used to identify the optimum region corresponding to the highest average recovery displaying at the same time the lowest standard deviation for all analytes. Under final optimal conditions, potato samples (0.5 g) were mixed and dispersed on the same amount of Florisil. The blend was transferred on a polypropylene cartridge and analytes were eluted using 10 ml of methanol. The extract was concentrated to 50 μl of acetonitrile/water (50:50) and injected in a high performance liquid chromatography coupled to UV–diode array detector system (HPLC/UV–DAD). Recoveries ranging from 55 to 96% and quantification limits between 5.3 and 15.2 ng/g were achieved. The method was also applied to other selected food commodities such as apple, carrot, cereals/wheat flour and orange juice demonstrating very good overall performance.  相似文献   

4.
The present study aimed at providing a new method in sight into short-wavelength near-infrared (NIR) spectroscopy of in pharmaceutical quantitative analysis. To do that, 124 experimental samples of metronidazole powder were analyzed using artificial neural networks (ANNs) in the 780-1100 nm region of short-wavelength NIR spectra. In this paper, metronidazole was as active component and other two components (magnesium stearate and starch) were as excipients. Different preprocessing spectral data (first-derivative, second-derivative, standard normal variate (SNV) and multiplicative scatter correction (MSC)) were applied to establish the ANNs models of metronidazole powder. The degree of approximation, a new evaluation criterion of the networks was employed to prove the accuracy of the predicted results. The results presented here demonstrate that the short-wavelength NIR region is promising for the fast and reliable determination of major component in pharmaceutical analysis.  相似文献   

5.
An electrochemical biosensor based on the immobilization of laccase on magnetic core-shell (Fe3O4–SiO2) nanoparticles was combined with artificial neural networks (ANNs) for the determination of catechol concentration in compost bioremediation of municipal solid waste. The immobilization matrix provided a good microenvironment for retaining laccase bioactivity, and the combination with ANNs offered a good chemometric tool for data analysis in respect to the dynamic, nonlinear, and uncertain characteristics of the complex composting system. Catechol concentrations in compost samples were determined by using both the laccase sensor and HPLC for calibration. The detection range varied from 7.5 × 10–7 to 4.4 × 10–4 M, and the amperometric response current reached 95% of the steady-state current within about 70 s. The performance of the ANN model was compared with the linear regression model in respect to simulation accuracy, adaptability to uncertainty, etc. All the results showed that the combination of amperometric enzyme sensor and artificial neural networks was a rapid, sensitive, and robust method in the quantitative study of the composting system. Figure Structure of the magnetic carbon paste electrode used in the electrochemical biosensor  相似文献   

6.
Metal ions such as Co(II), Ni(II), Cu(II), Fe(III) and Cr(III), which are commonly present in electroplating baths at high concentrations, were analysed simultaneously by a spectrophotometric method modified by the inclusion of the ethylenediaminetetraacetate (EDTA) solution as a chromogenic reagent. The prediction of the metal ion concentrations was facilitated by the use of an orthogonal array design to build a calibration data set consisting of absorption spectra collected in the 370-760 nm range from solution mixtures containing the five metal ions earlier. With the aid of this data set, calibration models were built based on 10 different chemometrics methods such as classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), artificial neural networks (ANN) and others. These were tested with the use of a validation data set constructed from synthetic solutions of the five metal ions. The analytical performance of these chemometrics methods were characterized by relative prediction errors and recoveries (%). On the basis of these results, the computational methods were ranked according to their performances using the multi-criteria decision making procedures preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA). PLS and PCR models applied to the spectral data matrix that used the first derivative pre-treatment were the preferred methods. They together with ANN-radial basis function (RBF) and PLS were applied for analysis of results from some typical industrial samples analysed by the EDTA-spectrophotometric method described. DPLS, DPCR and the ANN-RBF chemometrics methods performed particularly well especially when compared with some target values provided by industry.  相似文献   

7.
Artificial neural networks (ANNs) were successfully developed for the modeling and prediction dielectric constant of different ternary liquid mixtures at various temperatures (?10°C?≤?t?≤?80°C) and over the complete composition range (0?≤?x 1,?x 2,?x 3?≤?1). A three-layered feed forward ANN with architecture 7-16-1 was generated using seven parameters as inputs and its output is dielectric constant of media. It was found that properly selected and trained neural network could fairly represent the dependence of dielectric constant of different ternary liquid mixtures on temperature and composition. For the evaluation of the predictive power of the generated ANN, an optimized network was applied for predicting the dielectric constant in the prediction set, which were not used in the modeling procedure. Squared correlation coefficient (R 2) and root mean square error for prediction set are 0.9997 and 0.2060, respectively. The mean percent deviation (MPD) for the property in the prediction set is 0.8892%. The results show nonlinear dependence of dielectric constant of ternary mixed solvent systems on temperature and composition is significant.  相似文献   

8.
Benzoic acid(BA),methylparaben(MP),propylparaben(PP)and sorbic acid(SA)are food preservatives,and they have well defined UV spectra.However,their spectra overlap seriously,and it is difficult to determine them individually from their mixtures without preseparation.In this paper,seven different chemometric approaches were applied to resolve the overlapping spectra and to determine these compounds simultaneously.With respect to the criteria of%relative prediction error(RPE)and%recovery, principal component...  相似文献   

9.
A neural network model for predicting country‐level concentrations of the fraction of particulates in the air with sizes less than 10 µm (PM10) has been developed using widely available sustainability and economical/industrial parameters as inputs. The model was trained and validated with the data for 23 European Union (EU) countries plus the EU27 as a group for the period from 2000 to 2008. The inputs for the model were selected using correlation analyses. Country‐level PM10 concentration data that were used as a model output were obtained from the World Bank. The artificial neural network (ANN) model, created with inputs chosen by correlation analyses, has shown very good performance in the forecast of country‐level PM10 concentrations. The mean absolute error for the ANN model prediction, in the case of most of the EU countries, was less than 13%, indicating stable and accurate predictions. The predictions obtained from the principal component regression model, which was trained and tested using the same datasets and input variables, had mean absolute errors from 20% to 150% for most of the countries. The wide availability of input parameters used in this model can overcome the problem of lack and scarcity of data in many countries, which can in turn prevent the determination of human exposure to PM10 at the national level. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The determination of the components of the sialoliths is important both from the point of view of chances for a successful medical treatment of the patients and because the prevention of further re-occurrence of sialolithiasis depends upon the knowledge of the nature of the constituents of the concrements. Despite the fact that infrared spectroscopy is widely used for the determination of the composition of sialoliths, urinary calculi and bladder stones, we found no data for any chemometric method developed for such purposes. Here, a method is presented for quantitative determination of the content of salivary calculi composed of albumin and carbonate apatite (one of the most often found constituents in the analyzed calculi from the patients from Macedonia) using artificial neural networks (ANN). The results were checked on real samples using the standard addition method. The precision of the method was estimated using the relative standard deviation, which shows that it is suitable for routine analysis.  相似文献   

11.
Artificial neural networks have been used for the correlation and prediction of solubility data of ammonia in ionic liquids. This solubility of ammonia is highly variable for different types of ionic liquids at the same temperature and pressure, its correlation and prediction is of special importance in the removal of ammonia from flue gases for which effective and efficient solvents are required. Nine binary ammonia + ionic liquids mixtures were considered in the study. Solubility data (PTx) of these systems were taken from the literature (208 data points for training and 50 data points for testing). The training variables are the temperature and the pressure of the binary systems (T, P), being the target variable the solubility of ammonia in the ionic liquid (x). The study shows that the neural network model is a good alternative method for the estimation of solubility for this type of mixtures. Absolute average deviations were below 5.6%, for each isothermal data set and overall absolute average deviations were below 3.0%. Only in the range of low solubility (below 0.2 in mole fraction) did predicted solubility give deviations higher than 10%.  相似文献   

12.
This paper describes development of artificial neural network (ANN) retention model, which can be used for method development in variety of ion chromatographic applications. By using developed retention model it is possible both to improve performance characteristic of developed method and to speed up new method development by reducing unnecessary experimentation. Multilayered feed forward neural network has been used to model retention behaviour of void peak, lithium, sodium, ammonium, potassium, magnesium, calcium, strontium and barium in relation with the eluent flow rate and concentration of methasulphonic acid (MSA) in eluent. The probability of finding the global minimum and fast convergence at the same time were enhanced by applying a two-phase training procedure. The developed two-phase training procedure consists of both first and second order training. Several training algorithms were applied and compared, namely: back propagation (BP), delta-bar-delta, quick propagation, conjugate gradient, quasi Newton and Levenberg-Marquardt. It is shown that the optimized two-phase training procedure enables fast convergence and avoids problems arisen from the fact that every new weight initialization can be regarded as a new starting position and yield irreproducible neural network if only second order training is applied. Activation function, number of hidden layer neurons and number of experimental data points used for training set were optimized in order to insure good predictive ability with respect to speeding up retention modelling procedure by reducing unnecessary experimental work. The predictive ability of optimized neural networks retention model was tested by using several statistical tests. This study shows that developed artificial neural network are very accurate and fast retention modelling tool applied to model varied inherent non-linear relationship of retention behaviour with respect to mobile phase parameters.  相似文献   

13.
The paper reports the use of a chemoresistive multisensor array for recognition of some adulterated Italian wines (two white, four red, two rosè) added with methanol, ethanol or other same-colour wine. A multisensor array constituted by four thin-film semiconducting metal oxide sensors, surface-activated by Pt, Au, Pd, Bi metal catalysts, has been used to generate the chemical pattern of the volatile compounds present in the wine samples. The responses of the multisensor array towards wines tested by headspace sampling have been evaluated. Multivariate analysis including principal component analysis (PCA) as well as back-propagation method trained artificial neural networks (ANNs) have been applied to analytical data generated from the multisensor array to identify both the adulteration of wines and to determine the added content of adulterant agent of methanol or ethanol up to 10 vol.%. The cross-validated ANNs provide the highest achieved percentage of correct classification of 93% and the highest achieved correlation coefficient of 0.997 and 0.921 for predicted-versus-true concentration of methanol and ethanol adulterant agent, respectively.  相似文献   

14.
Zhang YX  Li H  Havel J 《Talanta》2005,65(4):853-860
The prediction of migration time of electroosmotic flow (EOF) marker was achieved by applying artificial neural networks (ANN) model based on principal component analysis (PCA) and standard normal distribution simulation to the input variables. The voltage of performance, the temperature in the capillary, the pH and the ionic strength of background electrolytes (BGE) were applied as the input variables to ANN. The range of the performance voltage studied was from 15 to 27 kV, and that of the temperature in the capillary was from 20 to 30 °C. For the pH values studied, the range was from 5.15 to 8.04. The range of the ionic strength investigated in this paper was from 0.040 to 0.097. The prediction abilities of ANN with different pre-processing procedure to the input variables were compared. Under the same performance conditions, the average prediction error of the migration time of the EOF marker was 5.46% with RSD = 1.76% according to 10 parallel runs of the optimized ANN structure by the proposed approach, and that of the 10 parallel predictions of the optimal ANN structure for the different performance conditions was 12.95% with RSD = 2.29% according to the proposed approach. The study showed that the proposed method could give better predicted results than other approaches discussed.  相似文献   

15.
Optimal operating variables for preparing submicron uniform titania colloids were estimated using the artificial neural networks (ANN) modeling and the process optimization algorithms. Titania colloids were synthesized by a sol–gel method using mixture recipes of titanium tetraisopropoxide (TTIP), NH3, and H2O with ethanol/acetonitrile under temperature-controlled conditions. Different sets of the operating variables, such as [NH3], [H2O], and reaction temperature, were selected within an operating range to carry out Design of Experiment to evaluate the prepared particle size (PS) and the particle size distribution (PSD) data. The relationship between the operating variables and PS and PSD of the prepared samples can be constructed by an ANN modeling approach. The built ANN model was then used to predict PS and PSD values corresponding to the operating variables. The optimal operating conditions to fabricate different PS values with narrow PSD were determined by the ANN model with the optimization method. Meanwhile, the monodispersed colloids between 150 and 400 nm were fabricated using the determined optimal operating conditions.  相似文献   

16.
Gradient elution in ion chromatography (IC) offers several advantages: total analysis time can be significantly reduced, overall resolution of a mixture can be increased, peak shape can be improved (less tailing) and effective sensitivity can be increased (because there is little variation in peak shape). More importantly, it provides the maximum resolution per time unit. The aim of this work was the development of a suitable artificial neural network (ANN) gradient elution retention model that can be used in a variety of applications for method development and retention modelling of inorganic anions in IC. Multilayer perceptron ANNs were used to model the retention behaviour of fluoride, chloride, nitrite, sulphate, bromide, nitrate and phosphate in relation to the starting time of gradient elution and the slope of the linear gradient elution curve. The advantage of the developed model is the application of an optimized two-phase training algorithm that enables the researcher to make use of the advantages of first- and second-order training algorithms in one training procedure. This results in better predictive ability, with less time required for the calculations. The number of hidden layer neurons and experimental data points used for the training set were optimized in terms of obtaining a precise and accurate retention model with respect to minimization of unnecessary experimentation and time needed for the calculation procedures. This study shows that developed, ANNs are the method of first choice for retention modelling of inorganic anions in IC.  相似文献   

17.
This paper presents an optosensor for screening of four polycyclic aromatic hydrocarbons: anthracene (ANT), benzo[a]pyrene (BaP), fluoranthene (FLT), and benzo[b]fluoranthene (Bbf) using a photomultiplier device with an artificial neural network as transducer. The optosensor is based on the on-line immobilization on a non-ionic resin (Amberlite XAD-4) solid support in a continuous flow. The determination was performed in 15 mM H2PO4/HPO42− buffer solution at pH 7 and 25% of 1,4-dioxane. Feed forward neural networks (multiplayer perceptron) have been trained to quantify the considered Polycyclic aromatic hydrocarbons (PAHs) in mixtures under optimal conditions. The optosensor proposed was also applied satisfactorily to the determination of the considered PAHs in water samples in presence of the other 12 EPA–PAHs.  相似文献   

18.
Regional variations in arterial concentrations of Ca, Mg and Fe may influence susceptibility to atherosclerosis. However, investigation of such hypotheses requires the availability of a sensitive, reliable method for the determination of elements in small arterial samples. These biologically important elements are determined in rabbit arteries by inductively coupled plasma atomic emission spectrometry (ICP-AES). Arterial samples (aorta and iliac arteries) are collected from 4- and 6- to 7-month-old rabbits fed rabbit chow. Closed-vessel microwave acid digestion is used to prepare the samples. The accuracy of the method is tested with a NIST bovine liver (1577b) standard reference material, and the amount of each metal found is within the reported uncertainty in the certified concentration. Also, the recovery from artery samples spiked with 0.5 μg of each metal is nearly 100% (96-105% Ca, 93-105% Fe, and 92-104% Mg). The simultaneous multielement detection of Ca, Fe and Mg at levels more than 1000-fold higher than the detection limit, in arterial samples weighing as little as 5 mg, suggests that this method may be applicable to very small clinical samples or arterial samples from very small animals.  相似文献   

19.
In this work, artificial neural network (ANN), a powerful chemometrics approach for linear and nonlinear calibration models, was applied to detect three pesticides in mixtures by linear sweep stripping voltammetry (LSSV) despite their overlapped voltammograms. Electrochemical parameters for the voltammetry, such as scan rate, deposit time and deposit potential, were evaluated and optimized from the signal response data using ANN model by minimizing the relative prediction error (RPE). The proposed method was successfully applied to the detection of pesticides in synthetic samples and several commercial fruit samples.  相似文献   

20.
This study compares the performance of partial least squares (PLS) regression analysis and artificial neural networks (ANN) for the prediction of total anthocyanin concentration in red-grape homogenates from their visible-near-infrared (Vis-NIR) spectra. The PLS prediction of anthocyanin concentrations for new-season samples from Vis-NIR spectra was characterised by regression non-linearity and prediction bias. In practice, this usually requires the inclusion of some samples from the new vintage to improve the prediction. The use of WinISI LOCAL partly alleviated these problems but still resulted in increased error at high and low extremes of the anthocyanin concentration range. Artificial neural networks regression was investigated as an alternative method to PLS, due to the inherent advantages of ANN for modelling non-linear systems. The method proposed here combines the advantages of the data reduction capabilities of PLS regression with the non-linear modelling capabilities of ANN. With the use of PLS scores as inputs for ANN regression, the model was shown to be quicker and easier to train than using raw full-spectrum data. The ANN calibration for prediction of new vintage grape data, using PLS scores as inputs, was more linear and accurate than global and LOCAL PLS models and appears to reduce the need for refreshing the calibration with new-season samples. ANN with PLS scores required fewer inputs and was less prone to overfitting than using PCA scores. A variation of the ANN method, using carefully selected spectral frequencies as inputs, resulted in prediction accuracy comparable to those using PLS scores but, as for PCA inputs, was also prone to overfitting with redundant wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号