首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The reactions of tetraphenylantimony with hexachloroplatinic and chloroauric acids in benzene afford bis(tetraphenylantimony) hexachloroplatinate (I) and tetraphenylantimony tetrachloroaurate (II), respectively. Compound II is also synthesized from tetraphenylantimony chloride and chloroauric acid in acetone. Bis(tetraphenylantimony) hexachlorostannate (III) is synthesized from tin dichloride and tetraphenylantimony chloride in acetone or from tin tetrachloride and tetraphenylantimony chloride in benzene. The crystal structures of compounds I–III are determined by X-ray diffraction analysis. The antimony atoms in the [Ph4Sb]+ cations have a distorted tetrahedral coordination (CSbC bond angles range from 105.7(1)° to 118.5(1)° (I), from 106.2(3)° to 114.4(3)° (II), and from 106.0(1)° to 117.1(1)° (III)). The Sb-C bond lengths vary in intervals of 2.094(2)–2.098(2), 2.087(7)–2.111(7), and 2.093–2.100(3) ?, respectively. The coordination of the Pt and Sn atoms in complexes I and III is close to an ideal octahedral coordination with ClPtCl and ClSnCl bond angles of 88.68(2)°–91.32(3)° and 88.84(3)°–91.16(3)°, respectively. The square coordination of the Au atom in complex II is slightly distorted: the Au-Cl bond lengths are 2.266(2)–2.277(2) ?, the ClAuCl bond angles are equal to 89.7(1)°–90.5(1)°, the root-mean-square deviation of the atoms from the coordination plane being 0.004 ?. Original Russian Text ? V.V. Sharutin, V.S. Senchurin, O.A. Fastovets, A.P. Pakusina, O.K. Sharutina, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 5, pp. 373–379.  相似文献   

2.
The complexes [Bu4N]2+[PtBr6]2− (I), [Ph4P]2+[PtBr6]2− (II), and [Ph3(n-Am)P]2+ (III) are synthesized by the reactions of tetrabutylammonium bromide, tetraphenylphosphonium bromide, and triphenyl(n-amyl)-tetraphenylphosphonium bromide, respectively, with potassium hexabromoplatinate (mole ratio 2: 1). After recrystallization from dimethyl sulfoxide, complexes I, II, and III transform into [Bu4N]+[PtBr5(DMSO)] (IV), [Ph4P]+[PtBr5(DMSO)] (V), and [Ph3(n-Am)P]+[PtBr5(DMSO)] (VI). According to the X-ray diffraction data, the cations of complexes IVVI have a slightly distorted tetrahedral structure. The N-C and P-C bond lengths are 1.492(7)–1.533(6) and 1.782(10)–1.805(10) ?, respectively. The platinum atoms in the mononuclear anions are hexacoordinated. The dimethyl sulfoxide ligands are coordinated with the Pt atom through the sulfur atom (Pt-S 2.3280(18)–2.3389(11) ?). The Pt-Br bond lengths are 2.4330(6)–2.4724(6) ?.  相似文献   

3.
4.
Complexes [Me3EtN]2+[CoI4]2− (I) and [Me3EtN]2+[CoI4]2− (II) were synthesized by reacting trimethylalkylammonium iodide with cobalt(II) iodide in acetone. According to X-ray diffraction data, complexes I and II consist of tetrahedral tetraalkylammonium cations (for I, N-C is 1.481(5)–1.590(8) CNC is 107.3(3)°–111.6(3)°; for II, N-C is 1.485(8)–1.506(10) ? and CNC is 106.9(7)°–111.7(5)°) and [CoI4]2− anions (for I, Co-I is 2.5951(5)–2.6127(5) ? and ICoI is 104.67(2)°–113.23(2)°; for II, Co-I is 2.5914(8)–2.5943(9) ? and ICoI is 107.05(2)°–114.42(5)°).  相似文献   

5.
Triphenylbenzylphosphonium tetrachloroaurate (I) and triethanolammonium tetrachloroaurate hydrate (II) were prepared by reacting tetrachloroauric acid in acetone with triphenylbenzylphosphonium and triethanolammonium, respectively. Triphenylethylphosphonium hexachlorodicuprate (III) was synthesized from triphenylethylphosphonium chloride and copper chloride in acetone. The crystal structures of complexes I to III were determined by single-crystal X-ray diffraction. The phosphorus atoms in complex I have a nearly undistorted tetrahedral coordination (CPC, 108.3°–110.6°; P-C, 1.788–1.793 ?). The coordination of nitrogen atoms in the cations of complex II is a distorted tetrahedron (CNC, 111.7°–112.4°). The square coordination of aurum in I and II is only slightly distorted: the ClAuCl angles are 89.6°–90.3° (I) and 89.5°–90.6° (II) and the Au-Cl distances are 2.256–2.278 ? I) and 2.280–2.285 ? (II). The phosphorus atoms in complex III are tetracoordinated (CPC, 106.34°–111.73°; P-C, 1.790–1.795 ?). The copper atoms in III have a distorted tetrahedral coordination (ClCuCl, 98.48°–144.85°; Cu-Cl, 2.1999–2.3263 ?). The central fragment Cu2Cl2 in the anion of complex III is bent relative to the Cu2 axis (the chlorine atom deviates from the Cu2Cl plane by 0.27 ?).  相似文献   

6.
7.
[RhPy4Cl2]Cl·4H2O (I), [RhPy4Cl2]ReO4 (II), [RhPy4Cl2]ClO4 (III), and [RhPy4Cl2]ReO4·2H2O complex salts were synthesized. The crystal structure of compounds II (P4/ncc, a = 25.5655(3) ?, c = 14.3521(4) ?), III (P21/n, a = 13.5308(3) ?, b = 15.1044(5) ?, c = 23.3457(8) ?, β = 93.327°), and dyhydrate of II (Pbcm, a = 10.6199(9) ?, b = 10.4964(9) ?, c = 22.9834(16)?) was determined by X-ray diffraction analysis. The thermal transformations of the complexes were studied by differential thermal analysis. The substances were characterized by IR spectroscopy, XRPA, and element analysis Original Russian Text Copyright ? 2009 by D. B. Vasilchenko, I. A. Baidina, E. Yu. Filatov, and S. V. Korenev __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 2, pp. 349–356, March–April, 2009.  相似文献   

8.
Three new heteronuclear complexes [Ru(NO)(NO2)4(OH)M(Py)3] (M = Co2+, Ni2+, Zn2+) were synthesized and structurally characterized. In all compounds, the [Ru(NO)(NO2)4(OH)] fragment is coordinated to the M atom by a bridging OH and two bridging NO2 groups. The coordination environment of the metal also includes three pyridine nitrogen atoms. Thermal decomposition of cobalt and nickel complexes in an inert atmosphere yields bimetallic solid solutions. Original Russian Text ? G.A. Kostin, A.O. Borodin, Yu.V. Shubin, N.V. Kurat’eva, V.A. Emelyanov, P.E. Plyusnin, M.R. Gallyamov, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 1, pp. 57–64.  相似文献   

9.
The nature of H2B=NH2...M n+, HB=NH...M n+, and Borazine...M n+ interactions were studied with ab-initio calculations. The interaction energies were calculated at B3LYP/6-31G(d, p) level. The calculations suggest that the size and charge of cation are two influential factors that affect the nature of interaction. The theory of atoms in molecules (AIM) and natural bond orbital (NBO) analysis of complexes indicate that the variation of densities and the extent of charge shifts upon complexation correlate well with the obtained interaction energies.  相似文献   

10.
Complexes Ph3(n-Pr)P2+[CoI4]2− (I) and [Ph3(n-Am)P]2+ [CoI4]2− (II) were synthesized by reactions of triphenyl(alkyl)phosphonium iodide with cobalt(II) iodide in acetone. According to the X-ray diffraction data, complexes I and II consist of tetrahedral triphenyl(alkyl)phosphonium cations (for I, P-C is 1.787(4)–1.804(4) ? and CPC is 106.73(18)°–111.4(18)°; for II P-C is 1.786(6)–1.802(6) ? and CPC is 107.6(3)°–111.7(3)°) and [CoI4]2− anions (Co-I 2.5923(6)–2.6189(6) ?, ICoI 101.86(2)°–113.25(2)° for I; Co-I 2.5899(9)–2.6171(9) 107.01(3)°–110.47(3)° for II).  相似文献   

11.
Zusammenfassung Es wird über eine Methode zur Bestimmung von Halogenidionen in Halogenidgemischen berichtet. Die Endpunktindikation erfolgt nach dem Prinzip der Polarisationsspannungstitration und liefert scharf ausgeprägte Titrationsendpunkte in der Reihenfolge der Schwerlöslichkeit der Ag-Halogenide. Insbesondere wird auch der für Serienanalysen erforderlichen Einfachheit und geringen Störanfälligkeit Rechnung getragen. Das Verfahren eignet sich für die Analyse anorganischer Halogenidgemische, für die Bestimmung von CN- und SCN -Ionen und für die Analyse organischer Halogenverbindungen im Makro- und Halbmikromaßstab nach deren Aufschluß. Die Meßanordnung kann außerdem für die Bestimmung von Kalium und für die Endpunktindikation einiger chelatometrischer Titrationen eingesetzt werden.
Summary A method is described for the determination of halogenide in mixtures of halogenides. End points are sharply indicated by the polarisation titration technique in the order of solubility of the silver halogenides. The method is suitable for the analysis of mixtures of inorganic halogenides, for the determination of CN and SCNions, and for the analysis of organic halogen compounds in macro and semimicro scale after decomposition. For routine analyses it offers the advantage of being simple and only slightly liable to interferences. Moreover, the assembly can be used for the determination of potassium and for the end point indication in some chelatometric titrations.
  相似文献   

12.

Abstract  

A green-colored V(III) compound, imidazolium hexafluorovanadium(III), [C3H5N2)]3[VF6], has been prepared and characterized. The geometric and electronic structure, together with charge-transfer, optical, and bonding properties, were thoroughly investigated by X-ray crystallography, density functional theory (DFT), and time-dependent density functional theory (TDDFT) calculations. The low-energy charge-transfer bands responsible for its green color may be theoretically assigned to a F(2p) → V(4p) ligand-to-metal charge-transfer transition. The ligand-field charge-transfer bands (d → d bands) occur at a lower energy region; they are too weak and will be obscured by the quite intense ligand-to-metal bands in the optical spectrum. Partial density of states analysis clearly shows that the nature of metal–ligand interactions in [VF6]3− is mainly ionic.  相似文献   

13.
Type studies on competitive polyatomic anion versus acetonitrile coordination in the self-assembly of a series of [Ag2(X) m (bip)(NCCH3) n ](X)2−m (X = NO3 , CF3SO3 , ClO4 , BF4 , and PF6 ; m = 0, 2; n = 0, 2, 4; bip = 1,4-bis(2-isonicotinoyloxyethyl)piperazine) were carried out. Each bip spacer acts as an N4 tetradentate ligand and is linked to four silver(I) centers through two pyridine and two piperazine moieties, producing a double strand consisting of two 20-membered ring units. The coordinating environment around the silver(I) center is subtly determined by the competition of the polyatomic anions with acetonitrile, that is, by the Ag···NCCH3 versus Ag···X interactions. The coordinating ability of acetonitrile is inversely proportional to the order of the coordination ability of the Hoffmeister series of polyatomic anions, NO3  ≫ CF3SO3  > ClO4  > BF4  ≫ PF6 .  相似文献   

14.
The potential energy curves (PECs) of three low-lying electronic states (X3-, a1△, and A'3△) of SO radical have been studied by ab initio quantum chemical method. The calcula-tions were carried out with the full valence complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration in-teraction (MRCI) approach in combination with correlation-consistent basis sets. Effects of the core-valence correlation and relativistic corrections on the PECs are taken into account. The core-valence correlation correction is carried out with the cc-pCVDZ basis set. The way to consider the relativistic correction is to use the second-order Douglas-Kroll Hamiltonian approximation, and the correction is performed at the level of cc-pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). These PECs are extrapolated to the complete basis set limit by the two-point energy extrapolation scheme. With these PECs, the spectroscopic parameters are determined.  相似文献   

15.
Mercury complexes [Ph3AlkP]2+[Hg2I6]2− and [Ph3AlkP]2+[Hg4I10]2− (R = Me, Et, Pr, iso-Pr, Bu, iso-Bu) are synthesized by the reactions of triphenylalkylphosphonium Ph3AlkPI with mercury iodide in acetone with the mole ratio 1: 1 and 1: 2, respectively. According to X-ray diffraction data, the phosphorus atom in the cations of the [Ph3(iso-Pr)P]2+[Hg2I6]2−, [Ph3BuP]2+[Hg2I6]2−, and [Ph3(iso-Pr)P]2+[Hg4I10]2− complexes has a distorted tetrahedral coordination. The CPC bond angles and P-C bond lengths vary within 107.3(4)°-112.0(4)° and 1.774(8)-1.827(7) ?. In the [Hg2I6]2− centrosymmetric binuclear anions, the mercury atoms of tetrahedral coordination lie in two near-perpendicular Hg2I6planes. Hg4I4 eight-membered cycles of the [Hg4I10]2− tetranuclear anion are joined into polymeric chains through Hg … I coordination bonds (3.334, 3.681 &OA) due to which Hg atoms have a trigonal bipyramidal coordination. Original Russian Text ? V.V. Sharutin, V.S. Senchurin, N.N. Klepikov, O.K. Sharutina, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 2, pp. 267–273.  相似文献   

16.
The complexes [Ph3BuP]2+[Bi2I8 · 2Me2C=O]2− (II) and [Ph3BuP]2+[Bi2I8 · 2Me2S=O]2− (III) are synthesized by the reactions of triphenyl(n-butyl)phosphonium iodide (I) with bismuth iodide in acetone and dimethyl sulfoxide. In the cations of complexes I–III, the P atoms have a distorted tetrahedral coordination (CPC angles 106.3(2)°–112.0(3)°). The butyl group in cation I is disordered over two positions. In the binuclear centrosymmetric anions of structures II and III, the octahedrally coordinated bismuth atoms are linked in pairs by two bridging (br) iodine atoms (Bi-Ibr 3.1508(7) and 3.2824(8) ? in compound II, 3.1961(3) and 3.3108(3) ? in complex III), which are coplanar to four terminal (t) iodine atoms (Bi-It 2.9260(7) and 2.9953(6) ? in complex II, 2.9206(3) and 2.9786(3) ? in complex III). The two remaining positions at the bismuth atom are occupied by the iodine atom (Bi-It 2.8531(7) ? in complex II, 2.8984(3) ? in complex III) and O atom of the organic molecule (Bi-O 2.747(6) ? in complex II, 2.507(3) ? in complex III). Original Russian Text ? V.V. Sharutin, I.V. Egorova, N.N. Klepikov, E.A. Boyarkina, O.K. Sharutina, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 3, pp. 188–192.  相似文献   

17.
The interaction between the radical anions C60 ·− and divalent d- and f-metal (Co, Fe, Ni, Mn, Eu, Cd) cations in DMF and acetonitrile-benzonitrile (AN-BN) mixture was studied. Black solid polycrystalline salts (C60 ·−)2{(M2+)(DMF) x } (x = 2.4–4, 1–6) containing the radical anions C60 ·− and metal(ii) cations solvated by DMF were prepared for the first time and their optical and magnetic properties were studied. The salts containing Co2+, Fe2+, and Ni2+ are characterized by antiferromagnetic interactions between the radical anions C60 ·−, which result in unusually large broadening of the EPR signal of C60 ·− upon lowering the temperature (from 5.55–12.6 mT at room temperature to 35–40 mT at 6 K for Co2+ and Ni2+). The salts containing Mn2+ and Eu2+ form diamagnetic dimers (C60 )2, which causes a jumpwise decrease in the magnetic moment of the complexes and disappearance of the EPR signal of C60 ·− in the temperature range 210–130 K. A feature of salt 6 is magnetic isolation of the radical anions C60 ·− due to the presence of diamagnetic cation Cd2+. The salts prepared are unstable in air and decompose in o-dichlorobenzene or AN. Reactions of C60 ·− with metal(ii) cations in AN-BN mixture result in decomposition products of the salts that contain neutral fullerene dimers and metals solvated by BN. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1909–1919, September, 2008.  相似文献   

18.
Two new molybdovanadates, (H3NCH2CH2NH3)3 [Mo6VO22(CH3COO)3]·5H2O (1) and (H3NCH2CH2NH3)2{(Mo6V2O26)[Cu(NH2CH2CH2NH2)(H2O)2]}·4H2O (2), have been synthesized in aqueous solution and characterized by IR, UV–vis, single-crystal X-ray diffraction, thermal gravimetric, elemental analysis, and magnetic analysis. Compound 1 is a crown-shaped ring consisted of six edge-sharing MoO6 octahedra linked to a central {VO4} unit. The MoO6 octahedra are in pairs connected with the carboxylato ligands from three acetic acid molecules. Compound 1 is the first example of a molybdovanadate coordinated by acetic acid molecules. In addition, multipoint hydrogen-bonding interactions exist in 1, which bridge the crown-shaped [Mo6VO22 (CH3COO)3]6− clusters and the protonated ethylenediamine molecules into three-dimensional (3D) networks. The structural feature of compound 2 is the formation of one-dimensional (1D) zip-zag chain in which [Mo6V2O26]6− clusters are covalently bonded to copper coordination groups through the terminal oxygen of the {VO4} tetrahedron. The magnetic investigation on compound 2 demonstrates the possible occurrence of antiferromagnetic interactions by intermolecular linkage.  相似文献   

19.
Three novel complex salts containing the cation trans-[Rh(β-Pic)4Cl2]+ with the anions Cl (I), ReO4 (II), and ClO4 (III) were obtained and characterized by elemental analysis, X-ray diffraction, NMR spectroscopy, and IR spectroscopy. The complex trans-[Rh(β-Pic)4Cl2]ReO4 crystallizes from DMF as a solvate in which solvent molecules fill the channels formed by the cations and anions. The thermal properties of complexes I, II, and II · DMF were examined by DTA. Final and some intermediate products of the thermolysis were isolated and characterized by physicochemical methods.  相似文献   

20.
Experimental determination of density, ultrasonic velocity and viscosity of two pyrimidine bases thymine and cytosine along with their respective nucleosides, thymidine and cytidine has been carried out in aqueous urea solutions in the presence of different concentrations of three salts, viz. NaCl, KCl and CaCl2. The experimental data have been used for the computation of various thermodynamic parameters, viz. apparent molar volume, apparent molar compressibility, coefficients A and B of the Jones-Dole equation, internal pressure, acoustic impedance, etc. Structural studies of solutions under investigation have also been carried out by ultraviolet spectroscopy, and an attempt has been made to collaborate the findings of ultraviolet spectroscopy with results obtained thermodynamically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号