首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of mass transfer to a particle cluster or bubble rising in a developed fluidized bed rapidly enough for a region of closed circulation of the fluidizing agent (cloud) to be formed is investigated in the Stokes approximation on the basis of a model of the steady-state motion of the fluid and solid phases near the cluster or bubble [1]. Within the cloud surroundinga local inhomogeneity of the fluidized bed intense mixing of the fluid phase takes place and the mass transfer between the cloud and the surrounding medium is determined by diffusion. The method of matched asymptotic expansions is used to obtain an analytic solution of the problem of the concentration field and the diffusion mass flux to the surface of the cloud at small and large values of the Péclet number. The latter is determined from the relative velocity of the cluster, the radius of the cloud, and the effective diffusion coefficient. In the limiting case of zero concentration of the solid phase within the cluster the solution obtained describes the mass transfer to a bubble in the fluidized bed. A comparison is made with the corresponding results previously obtained within the framework of a model of the solid phase as an inviscid fluid [2]. It is shown that the effect of viscosity on the mass transfer to the bubble is most important at large Péclet numbers, and that the correction to the total diffusion flux to the surface of the closed circulation zone due to viscosity effects may reach 40%.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 60–67, July–August, 1986.  相似文献   

2.
Turbulent plane boundary layer flows of an incompressible fluid are considered. A refinement of the known Coles wake law is proposed. This refinement makes it possible to ensure the smooth matching of the turbulent boundary layer velocity profile with the outer flow and to extend the range of validity of the law to the case of large positive pressure gradients. The accuracy of the analytical approximation obtained is verified by comparison with the known experimental equilibrium velocity profiles. Using the approximation proposed, a relation for calculating the cross-sectional distribution of the Reynolds stress in the equilibrium boundary layer is derived. The pressure distributions for which the equilibrium turbulent boundary layer flows are single- and two-valued are distinguished.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 89–101.Original Russian Text Copyright © 2005 by Mikhailov.  相似文献   

3.
A method is described for the experimental study of the characteristics of the bubble phase in a developed fluidized bed in examples of disperse materials belonging to groups A and B in the well-known classification of Geldart [1], which distinguished four groups of fluidizable materials according to the densities and dimensions of the solid particles. The method developed makes it possible to determine the average and local characteristics of the phase of the bubbles in apparatus of arbitrary dimensions. Depending on whether the material belongs to group A or group B of the classification, the distributions are found of the bubbles in respect of their vertical dimensions and their velocities, as are also the relative numbers of occasions when agglomerates coalesce and form, and the relative times of contact between the inhomogeneities and a sensor in a flat fluidized bed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 71–76, September–October, 1987.  相似文献   

4.
Using statistically based measuring methods for the determination of local bubble size distributions and local average bubble shapes in gas fluidized beds, bubble characteristics have been measured in a fluidized bed column of 1 m diameter where quartz sand (minimum fluidizing velocity 0.0135 m/sec) was fluidized with air at velocities ranging from 0.05 to 0.30 m/sec. The results present experimental evidence that bubbles within large diameter fluidized beds do not rise completely randomly distributed in space but rather in the form of bubble chains which is in agreement with industrial operating experience in large scale fluid bed systems. Since the formation of bubble chains considerably reduces the residence time of the bubble gas this finding is of significance for the performance of fluidized bed reactors. The influence of the operating parameters on the extent of the bubble chain formation has been investigated and possible consequences of these results are discussed.  相似文献   

5.
The instability of a fluidized system in which the particles are uniformly distributed in space [1–3] leads to the development of local inhomogeneities in the internal structure, these taking the form of more or less stable formations of packets of particles [4]. In accordance with the existing ideas based on experimental data [5–8, 13], the particle concentration within a packet may vary in a wide range from very small values (10–2–10–3 [8]) for bubbles to the concentration of the unfluidized bed for bunches of particles in a nearly closely packed state. The paper considers the steady disturbed motion of the fluid and solid phases near an ascending or descending packet of particles in a developed fluidized bed. It is assumed that the motion of the solid phase corresponds to a creeping flow of viscous fluid, and the viscosity of the fluidizing agent is taken into account only in the terms that describe the interphase interaction. The velocity fields and pressure distributions of the phases inside and outside a packet are determined. If the particle concentration within a packet tends to zero, the solution describes the slow motion of a bubble in a fluidized bed. The results of the paper are compared with results obtained earlier for the model of ideal fluids [9] and Batchelor's model [10], in which the fluidized bed is treated in a simplified form as a viscous quasihomogeneous continuum.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 57–65, July–August, 1984.  相似文献   

6.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

7.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

8.
The primary difficulty in solving the problem of mass transport through an isolated drop (or bubble) moving in a fluid medium at high Reynolds numbers lies in the extreme complexity of the hydrodynamic pattern of the phenomenon. For sufficiently high velocities a separation of the external flow will occur in the rear portion of the drops and bubbles, which leads to the appearance of a turbulent wake and a sharp increase of the hydrodynamic resistance. Beginning with those dimensions for which the resistance force acting per unit surface of the drop or bubble from the external medium becomes greater than the capillary pressure, the surface of the drops and bubbles begins to deform and pulsate. The local variations of the surface tension, resulting either from the process of convective diffusion or from adsorption of surface-active substances, have a large effect on the hydrodynamics of drops and bubbles (particularly on the deformation of their surface) [1, 2], The presence of vortical, and possibly even turbulent, motion within the drops and bubbles may, under certain conditions [1], lead to their fractionation.Naturally, at the present time such complex hydrodynamics cannot be described by exact quantitative relations. Several authors have attempted to solve this problem approximately within the framework of certain assumptions. In particular [3–6], a theory was developed for the boundary layer on the surface of spherical and ellipsoidal gaseous bubbles moving in a liquid, studies were made [7, 8] of the hydrodynamics of drops located in a gas flow and the conditions were found for which fractionation of such drops takes place. Of considerable practical interest is the development of the theory of mass transfer in pulsating drops and bubbles and finding in explicit form the dependence of the mass transfer coefficients on the hydrodynamic characteristics of these systems. Until this relationship is established, every theory which ignores the effect of hydrodynamics on the mass transfer rate from an individual drop or bubble cannot be considered in any way well-founded. This relates particularly to the theories [9, 10] which consider mass transfer in systems with concentrated streams of drops and bubbles. The present paper is devoted to the study of mass transport through the surface of an isolated drop in an irrotational gas or liquid stream for large Peclet numbers P.In conclusion the authors wish to thank V. G. Levich for his helpful discussions.  相似文献   

9.
Experiments were performed to investigate the wake properties of a single gas bubble in a three-dimensional liquid-solid fluidized bed via a video camera moving at the same speed as the bubble. The solids holdup in the fluidized bed varied up to around 10%. The bubble size varied from 5 to 20 mm with corresponding bubble Reynolds numbers ranging from 1000 to 6500. The bubble was observed to have two types of wake configurations depending on the bubble size: the asymmetric/helical vortex wake for small bubbles and the symmetric wake for large bubbles. The bubble shape and relative rise velocity in the fluidized bed can be well-represented by correlations developed for single bubbles in liquid media, although the bubble shape in liquid-solid media is slightly more flattened compared to that in liquid media. The bubble rocking frequency was found to be independent of particle properties and to correspond in magnitude to the vortex shedding frequency in a two-dimensional liquid-solid fluidized bed. The average primary wake size in three dimensions is comparable to that in two dimensions.  相似文献   

10.
A heated horizontal heat transfer tube was installed 14.8 cm above the distributor plate in a square fluid bed measuring 30.5 × 30.5 cm. Four different Geldart B sized particle beds were used (sand of two different distributions, an abrasive and glass beads) and the bed was fluidized with cold air. The tube was instrumented with surface thermocouples around half of the tube circumference and with differential pressure ports that can be used to infer bubble presence. Numerical execution of the transient conduction equation for the tube allowed the local time-varying heat transfer coefficient to be extracted. Data confirm the presence of the stagnant zone on top of the tube associated with low superficial velocities. Auto-correlation of thermocouple data revealed bubble frequencies and the cross-correlation of thermal and pressure events confirmed the relationship between the bubbles and the heat transfer events. In keeping with the notion of a “Packet renewal” heat transfer model, the average heat transfer coefficient was found to vary in sympathy with the root-mean square amplitude of the transient heat transfer coefficient.  相似文献   

11.
A study is made of the problem of a two-dimensional turbulent boundary layer on the moving surface of a cylindrical body (a Rankine oval with a relative elongation of four) moving at constant velocity in an incompressible fluid. For the numerical simulation of the turbulent flow of the fluid, the boundary layer is divided into exterior and interior regions in accordance with a two-layer model, using different expressions for the coefficients of turbulent transfer for each region. A study was nade of the development of the boundary layer on the body at different speeds of the body surface and different Reynolds numbers. The following integral characteristics were found by numerical calculation: the work of friction as the body is displaced; the work expended on the movement of its surface; and, for a flow regime with separation, the work of the pressure force. In this case the following model of separation flow is assumed: beyond the singular point in the solution of the boundary layer equations that indicates the appearance of a region of reverse flow, the pressure and friction stress on the wall are constant and are determined by their values at the singular point.Translated from Izvestiya Akademii Nauk SSSH, Mekhanika Zhidkosti i Gaza, No. 5, pp. 61–67, September–October, 1984.Finally, the author would like to thank G. G. Chernyi and Yu. D. Shevelev for useful discussions and for their interest in this work.  相似文献   

12.
A relatively simple method of calculating the parameters of the flow behind a blunt trailing edge separating two supersonic streams is developed. The method is based on the use of the boundary layer approximation and integral laws of mass and energy conservation (viscous-inviscid interaction model). It makes it possible to determine the base pressure and base enthalpy with allowance for the effect of Mach numbers, Reynolds numbers, initial boundary layer thicknesses, specific heat ratios and wall enthalpies for various ratios of the total pressures and enthalpies of the two streams.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 167–176, September–October, 1991.  相似文献   

13.
The diffusion flux to a distorted gas bubble situated in a uniform viscous incompressible fluid flow is determined for large Reynolds and Péclet numbers and finite Weber numbers. The bubble has the shape of an ellipsoid of revolution, oblate in the flow direction, making it possible to use the flow field derived by Moore [1] in the form of a two-term expansion with respect to the flow parameter =R–1/2 (R is the Reynolds number; the zeroth term of the expansion corresponds to potential flow). The dependence of the diffusion flux onto the bubble surface on the Weber and Reynolds numbers is determined. The results of Winnikow [2] and Sy and Lightfoot [3] are thus generalized to the case of finite Weber numbers and a broader range of Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 70–76, July–August, 1976.  相似文献   

14.
The steady flow of a viscous incompressible fluid at high Reynolds numbers near a body of revolution of finite length whose radius coincides in order of magnitude with the thickness of the boundary layer is considered. The structure of the boundary layer in the neighborhood of the rear end of the body is investigated on the assumption that it has a power-law shape with values of the exponent n 1/2. A solution is also obtained for the near wake.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 10–18, September–October, 1990.  相似文献   

15.
The results of a numerical experiment to determine the damping of the free axisymmetric oscillations of a viscous incompressible liquid partly filling a right circular cylinder are presented. The experiment was carried out for Reynolds numbers at the lower limit of applicability of the laminar boundary layer approximation and for the case of finite oscillation amplitude. The influence of nonlinear effects on estimates of the logarithmic decrement is discussed at the quantitative level.Tomsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 158–162, September–October, 1994.  相似文献   

16.
Heat transfer characteristics in three-phase fluidized beds of floating bubble breakers have been studied in a 0.142 m I.D. x 2.0 m high Plexiglas column fitted with an axially mounted cylindrical heater.Effects of the liquid and gas velocities, the particle size, the volume ratio of floating bubble breaker to particles on phase holdup, the vertical bubble length, and the heat transfer coefficient have been determined.In the bubble-coalescing regime, the heat transfer coefficient in three-phase fluidized beds having the volume ratio Vf/Vs of 10–15% produced a maximum increase in heat transfer coefficient of about 20% in comparison to that in the bed without floating bubble breakers. Also, bubble length and gas-phase holdups exhibited their maximum and minimum values at a volume ratio of 10–15%. The heat transfer coefficient in three-phase fluidized beds of floating bubble breakers can be estimated from the surface renewal model with isotropic turbulence theory.Heat transfer coefficients expressed in terms of the Nusselt number have been correlated with the particle Reynolds number and the volume ratio of floating bubble breakers to particles.  相似文献   

17.
A model for a single fully developed bubble moving in an unbounded fluidized bed is presented. The model allows bubble growth or shrinkage during the rise inside the bed, as well as dependence of the rise velocity upon specified bed parameters. Limiting cases of nearly spherical bubbles and of sufficiently large bubbles whose form resembles that of a spherical segment are considered in more detail. The form of bubbles rising in either fluidized beds or one-phase liquids, and its dependence on the effective “surface tension” acting on the bubble boundary are discussed.  相似文献   

18.
The problem of the mass, thermal and dynamic interaction between a bubble containing a soluble gas and a liquid is considered. It is shown that this problem can be reduced to the problem of the behavior of a vapor bubble with phase transitions investigated in detail in [1–3]. Expressions are obtained for the rate of decay of the radially symmetric oscillations of the bubbles due to the solubility of the gas in the liquid. The effective coefficients of mass transfer between the radially pulsating bubbles and the liquid are determined. A numerical solution is obtained for the problem of the radial motion of a bubble created by a sudden change of pressure in the liquid which, in particular, corresponds to the behavior of the bubbles behind the shock front when a shock wave enters a bubble screen.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 52–59, November–December, 1985.  相似文献   

19.
A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas–solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the discrete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble stability, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.  相似文献   

20.
Formal asymptotic expansions of the solution of the steady-state problem of incompressible flow in an unbounded region under the influence of a given temperature gradient along the free boundary are constructed for high Marangoni numbers. In the boundary layer near the free surface the flow satisfies a system of nonlinear equations for which in the neighborhood of the critical point self-similar solutions are found. Outside the boundary layer the slow flow approximately satisfies the equations of an inviscid fluid. A free surface equation, which when the temperature gradient vanishes determines the equilibrium free surface of the capillary fluid, is obtained. The surface of a gas bubble contiguous with a rigid wall and the shape of the capillary meniscus in the presence of nonuniform heating of the free boundary are calculated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 61–67, May–June, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号