首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a detailed computer simulation study of the phase behavior of the Gay-Berne liquid crystal model with molecular anisotropy parameter kappa=4.4. According to previous investigations: (i) this model exhibits isotropic (I), smectic-A (Sm-A), and smectic-B (Sm-B) phases at low pressures, with an additional nematic (N) phase between the I and Sm-A phases at sufficiently high pressures; (ii) the range of stability of the Sm-A phase turns out to be essentially constant when varying the pressure, whereas other investigations seem to suggest a pressure-dependent Sm-A range; and (iii) the range of stability of the Sm-B phase remains unknown, as its stability with respect to the crystal phase has not been previously considered. The results reported here do show that the Sm-A phase is stable over a limited pressure range, and so it does not extend to arbitrarily low or high pressures. This is in keeping with previous investigations of the effect of molecular elongation on the phase behavior of Gay-Berne models. A detailed study of the melting transition at various pressures shows that the low-temperature crystalline phase melts into an isotropic liquid at very low pressures, and into a nematic liquid at very high pressures. At intermediate pressures, the crystal melts into a Sm-A liquid and no intermediate Sm-B phase is observed. On the basis of this and previous investigations, the reported Sm-B phase for Gay-Berne models appears to be a molecular solid rather than a smectic liquid phase.  相似文献   

2.
利用正电子湮没技术对侧链型热致高分子液晶丙烯酸酯共聚物进行了变温相变研究.除实验标识出样品的相变温度点外,根据试样中自由体积随温度的变化关系,对高分子液晶材料内部立链、侧链以及介晶基元的相变行为特点进行了探讨,并就与小分子液晶变化特点的一些不同做了解释.  相似文献   

3.
Abstract

Chiral liquid crystals exhibit molecular optical activity in the isotropic phase. We have studied the evolution of the optical activity as a function of an applied electric field on a 76·2 μm film of the chiral liquid crystal W7, which exhibits an isotropic–smectic A transition at approximately 40°C. We measured the optical activity by recording the rotation of the plane of polarization of an incident linearly polarized ray of light, provided by a He–Ne laser. The applied biasing electric field is parallel to the direction of the incident beam. We find that at 41·0°C, the plane of polarization shifts from ?1·1° for an applied voltage of 30 V to a maximum of ?4·0° at 70 V. The absolute value of the signal decreases beyond this voltage. These shifts are in the direction of the smectic A phase and are in general larger than those observed as a function of temperature. Close to the isotropic–smectic A phase transition, molecules inside the liquid coalesce to form dynamic coherent groups, which have smectic nature. These groups are randomly oriented with respect to each other in the absence of an electric field. The application of an electric field causes the molecules within these groups to align along the direction of the field and to contribute coherently to the optical activity of the system. The way the molecules align with the field depends on the relative values of the polarizability α, which contributes to the alignment of the long axis of the molecule, and the dipole moment p, which contributes to the alignment of the short axis of the molecule. Our preliminary results and calculations suggest that for small fields, the electric field couples with the dipole moment p, whereas for fields in excess of 70 V, the field couples with the polarizability of the long axis of the molecule, causing a rotational reorientation of the molecules in the isotropic phase. The value of the field at which this reorientation occurs may be controlled by temperature.  相似文献   

4.
Optical activity measurements in the isotropic phase of two antiferroelectric liquid crystal systems in which the chirality can be varied reveal unusual behaviour of the short range order. In one system the phase sequence as the chirality is increased is smectic A, smectic C*A, and smectic Q. In the other system the phase sequence is smectic C*, smectic C*A, and smectic Q as the chirality is increased. The short range order of the isotropic phase behaves similarly for these systems, showing mean field behaviour at low chirality and far above the phase transition, but deviating from this behaviour significantly as the chirality is increased and the phase transition is approached. These optical activity results indicate how different is the short range order in the isotropic phase for these antiferroelectric liquid crystal systems and demonstrates the crucial role played by chirality. Past theoretical work that includes smecticlike fluctuations in the calculation of short range order in the isotropic phase is capable of qualitatively explaining these results.  相似文献   

5.
We propose a new theoretical scheme for the binary phase diagrams of crystal-liquid crystal mixtures by a combination of a phase field model of solidification, the Flory-Huggins theory for liquid-liquid mixing and Maier-Saupe-McMillan (FH-MSM) model for nematic and smectic liquid crystal orderings. The phase field theory describes the crystal phase transition of anisotropic organic crystal and/or side chain liquid crystalline polymer crystals while the FH-MSM model explains isotropic, nematic and smectic-A phase transitions. Self-consistent calculations reveal several possible phase diagram topologies of the binary crystal-liquid crystal mixtures. The calculated phase diagrams were found to accord well to the reported experimental results.  相似文献   

6.
Polymer films containing dispersions of liquid crystal microdroplets have considerable potential for use in displays and other light control devices. These polymer-dispersed liquid crystal (PDLC) films operate by electric field control of light scattering, rather than by polarization control as in the case of twisted nematic systems. The scattering characteristics of the PDLC films are determined by the refractive indices of the polymer and liquid crystal and by the size of the microdroplets. We have found that it is possible to regulate the microdroplet size by controlling the droplet formation rate (i.e. the cure kinetics of the film). Using calorimetry and scanning electron microscopy, we determined the influence of cure kinetics on microdroplet size for epoxy-based PDLCs. We found that droplet size increased with increasing cure time constant. However, the relationship changed as cure temperature was varied, perhaps as a result of competing cure processes. We also determined the phase behaviour of the epoxy-based PDLCs. The liquid crystal acted as a plasticizer, depressing the glass transition temperature of the PDLC samples slightly below that of the pure epoxy. The temperature and enthalpy of the nematic to isotropic transition of the liquid crystal material in the microdroplets were both functions of cure temperature. From the transition enthalpy it was possible to estimate a, the fraction of liquid crystal contained in the droplets; we found that a decreased with increasing cure temperature, presumably as a result of greater liquid crystal solubility in the epoxy matrix at higher temperatures.  相似文献   

7.
Optical activity measurements in the isotropic phase of two antiferroelectric liquid crystal systems in which the chirality can be varied reveal unusual behaviour of the short range order. In one system the phase sequence as the chirality is increased is smectic A, smectic C* A, and smectic Q. In the other system the phase sequence is smectic C*, smectic C* A, and smectic Q as the chirality is increased. The short range order of the isotropic phase behaves similarly for these systems, showing mean field behaviour at low chirality and far above the phase transition, but deviating from this behaviour significantly as the chirality is increased and the phase transition is approached. These optical activity results indicate how different is the short range order in the isotropic phase for these antiferroelectric liquid crystal systems and demonstrates the crucial role played by chirality. Past theoretical work that includes smecticlike fluctuations in the calculation of short range order in the isotropic phase is capable of qualitatively explaining these results.  相似文献   

8.
《Liquid crystals》2000,27(2):225-231
Dielectric studies of the first order phase transition of a ferroelectric liquid crystal material having the phase sequence chiral nematic to smectic C* have been performed using thin (2.5 mum) cells in the frequency range 0.01 Hz to 12 MHz. For planar alignment, one of the cell electrodes was covered with a polymer and rubbed. Optically well defined alignment was obtained by applying an a.c. field below the N*-SmC* transition. Charge accumulation was enhanced by depositing a thick polymer aligning layer for the alignment of the liquid crystal molecules. A sub-hertz frequency dielectric relaxation process is detected in smectic C*, in the chiral nematic and a few degrees into the isotropic phase, due to the charge accumulation between the polymer layer and the ferroelectric liquid crystal material. The effect of temperature and bias field dependences on the sub-hertz dielectric relaxation process are reported and discussed.  相似文献   

9.
Temperature calibration of DSCs is usually carried out on heating. In order to accurately control the temperature during cooling experiments, the calibration has to be carried out on cooling. Therefore, three high-purity, thermally stable liquid crystals were used to perform a temperature calibration of an electrcial compensation DSC on cooling. All three liquid crystals have several liquid crystalline phases, and they all were purified to a 99.9% lovel. Temoperatures of the isotropic to nematic or cholesteric and the mesophase to mesophase transitions were used. It was verified that these liquid crystals have sufficient thermal stability for carrying out the calibration on cooling. The dependence of the real temperature on the indicated temperature has been established for all the combinations of the heating and cooling rates of practical interest. It is also shown that the vant's Hoff equation can only be applied to the crystal to a liquid crystal transition, but not to the liquid crystal to liquid crystal or liquid crystal to isotropic transitions.  相似文献   

10.
Dielectric studies of the first order phase transition of a ferroelectric liquid crystal material having the phase sequence chiral nematic to smectic C* have been performed using thin (2.5 mum) cells in the frequency range 0.01 Hz to 12 MHz. For planar alignment, one of the cell electrodes was covered with a polymer and rubbed. Optically well defined alignment was obtained by applying an a.c. field below the N*-SmC* transition. Charge accumulation was enhanced by depositing a thick polymer aligning layer for the alignment of the liquid crystal molecules. A sub-hertz frequency dielectric relaxation process is detected in smectic C*, in the chiral nematic and a few degrees into the isotropic phase, due to the charge accumulation between the polymer layer and the ferroelectric liquid crystal material. The effect of temperature and bias field dependences on the sub-hertz dielectric relaxation process are reported and discussed.  相似文献   

11.
The heat capacity of the cubic mesogen ACBC(16) was measured between 16 and 500?K by adiabatic calorimetry. As well as the known condensed phases, a new crystalline phase was found to undergo a glass transition at around 165?K. Phase transitions between crystal, SmC, cubic, and isotropic liquid phases took place at 399.16, 431.15, and 474.30?K, respectively. As in the case of ANBC, a broad hump was observed in the heat capacity of the isotropic liquid phase. The first order nature of the SmC–cubic phase transition was confirmed for the first time by the observation of supercooling of the cubic phase. The broad hump in the isotropic liquid phase was shown to extend to a low temperature side if the isotropic liquid was supercooled, suggesting that the event occurring at the hump is not directly related to the cubic–isotropic liquid phase transition.  相似文献   

12.
The molecular structure and conformational properties of the p-butoxybenzylidene-p′-propionyloxyphenylaniline molecule in the crystalline state and at temperatures of the crystal → nematic and nematic → isotropic liquid phase transitions were examined by AM1 calculations. It was found that the nematic → isotropic liquid phase transition is accompanied by a change in the molecular conformation.  相似文献   

13.
The induction of liquid crystal orientation through mechanical stretching was investigated for polymer dispersed liquid crystals (PDLCs) by means of infrared dichroism. Using a nematic liquid crystal BL006 and polyacrylic acid as the polymer matrix, it was possible to stretch the PDLC films with BL006 in either the isotropic or the nematic phase. After cooling the films under strain to room temperature, the molecular orientation of BL006 was found to be much higher for films that contained isotropic liquid droplets of BL006 at the time of stretching than for films that had nematic droplets. Stretching PDLC films with isotropic droplets results in no molecular orientation, but the orientation is induced during the subsequent cooling when BL006 goes through the isotropic-to-nematic phase transition. Interestingly for PAA/BL006, the nematic director orients along the long axes of the elongated droplets despite liquid crystal anchoring perpendicular to the polymer interface.  相似文献   

14.
The heat capacity of the cubic mesogen ACBC(16) was measured between 16 and 500 K by adiabatic calorimetry. As well as the known condensed phases, a new crystalline phase was found to undergo a glass transition at around 165 K. Phase transitions between crystal, SmC, cubic, and isotropic liquid phases took place at 399.16, 431.15, and 474.30 K, respectively. As in the case of ANBC, a broad hump was observed in the heat capacity of the isotropic liquid phase. The first order nature of the SmC-cubic phase transition was confirmed for the first time by the observation of supercooling of the cubic phase. The broad hump in the isotropic liquid phase was shown to extend to a low temperature side if the isotropic liquid was supercooled, suggesting that the event occurring at the hump is not directly related to the cubic-isotropic liquid phase transition.  相似文献   

15.
《Liquid crystals》2000,27(9):1183-1187
The induction of liquid crystal orientation through mechanical stretching was investigated for polymer dispersed liquid crystals (PDLCs) by means of infrared dichroism. Using a nematic liquid crystal BL006 and polyacrylic acid as the polymer matrix, it was possible to stretch the PDLC films with BL006 in either the isotropic or the nematic phase. After cooling the films under strain to room temperature, the molecular orientation of BL006 was found to be much higher for films that contained isotropic liquid droplets of BL006 at the time of stretching than for films that had nematic droplets. Stretching PDLC films with isotropic droplets results in no molecular orientation, but the orientation is induced during the subsequent cooling when BL006 goes through the isotropic-to-nematic phase transition. Interestingly for PAA/BL006, the nematic director orients along the long axes of the elongated droplets despite liquid crystal anchoring perpendicular to the polymer interface.  相似文献   

16.
Namil Kim 《Liquid crystals》2013,40(6):745-754
Experimental phase diagrams of binary mesogenic mixtures of reactive mesogenic diacrylate (RM257) monomer and low molar mass liquid crystals (E7) were determined by means of differential scanning calorimetry and optical microscopy. The combined free energy densities of Flory–Huggins for liquid–liquid demixing, Maier–Saupe for nematic ordering, and phase field free energy for crystal solidification was proposed to describe the phase diagrams of the starting E7/RM257 mixtures. The phase diagram thus constructed is an ideal mixing type, exhibiting a narrow loop of isotropic + nematic (I + N) coexistence region followed by the crystal + nematic (Cr1 + N) region in descending order of temperature. Of particular interest is the permanent fixation of the mesophase structures upon photopolymerisation of neat RM257 in the corresponding nematic and crystalline phases. Upon photopolymerisation of a low RM257 content mixture in both isotropic and nematic states, the nematic–isotropic transition of E7 was found to persist. The permanent structural anchoring is seen upon photo-curing of the 90/10 RM257/E7 mixture in the crystalline state.  相似文献   

17.
Abstract

It is known that an optical phase grating can be obtained when two mutually coherent laser beams overlap in a nematic liquid crystal. This is mainly due to director reorientation which contributes to a large optical non-linearity. It has been suggested by Herman and Serinko that a phase grating could be obtained in nematic liquid crystals if a D.C. field is used to bias it near the critical orientational Freedericksz transition. A homeotropic MBBA film biased by an electric field at 1 kHz has been studied. Two weak Ar+ laser beams were incident normally to the film with a small intersection angle (?0·4?). Using the picture of a director reorientation mechanism and a degenerate four wave mixing scheme, we have obtained the dependence of the diffraction beam intensity on that of the incident beam and the strength of the biased electric field. The theoretical prediction and experimental results both show that the phase grating diffraction can be dramatically enhanced by the coupling of the electric field to the optical field in the Freedericksz transition region. This is due to the critical behaviour of the sample at that transition. The prominently improved signal-to-noise ratio is discussed.  相似文献   

18.
In the self-consistent field approximation a theory of the orientational ordering is developed for the melt of dimers containing two mesogenic fragments capable of conformational reorganization. Discrete conformations of the dimers (rotational isomers) are characterized by the values of valence angles. Both three-dimensional and two-dimensional melts are considered. It is shown that the presence of bent isomers in the melt reduces the temperature of the phase transition to the anisotropic phase. For a three-dimensional system with first-order phase transition to the ordered state, the jump of the order parameter at the transition point for dimers with conformational flexibility appears to be greater than for rigid dimers. For dimers with two isomers (a linear and a bent one) the order parameter and the statistical weight of the linear isomer at the transition point depend nonmonotonously on the statistical weight of this isomer in the isotropic phase. The effect of “supercooling” of the isotropic phase for linear conformations of flexible dimers is discussed.  相似文献   

19.
A high‐resolution calorimetric study of the specific heat (Cp ) has been carried out for the isotropic to nematic phase transition in an aligned liquid crystal (octylcyanobiphenyl ‐ 8CB) and aerosil nano‐colloid gel. A stable alignment was achieved by repeated thermal cycling of the samples in the presence of a strong uniform magnetic field, which introduces anisotropy to the quenched random disorder of the silica gel. In general, the specific heat features of the I?N transition in aligned (anisotropic) gel samples are consistent with those seen in random (isotropic) gel samples, namely the observance of two Cp peaks and non‐monotonic transition temperature shifts with increasing silica concentration. However, larger transition temperature shifts with silica density, modification of the phase conversion process in the two‐phase coexistence region, and a larger effective transition enthalpy are observed for the aligned samples. The lower‐temperature aligned Cp peak is larger and broader while exhibiting less dispersion than the equivalent peak for the random gel. This may be a consequence of the alignment altering the evolution from random‐dilution‐dominated to random‐field‐dominated effects. The exact origin of the larger transition temperature shifts is uncertain but the larger enthalpy suggests that the nematic state is different in the aligned system than in random gels. The general non‐monotonic behaviour of the transition temperature is interpreted using dimensional analysis as a combination of an effective elastic stiffening of the liquid crystal combined with a liquid crystal and aerosil surface interaction energy.  相似文献   

20.
We show that ultrathin films of a semiconductive discotic liquid crystal, viz. phthalocyanines, can be organized to form a conductive channel tens of microns long between Au electrodes with thickness control over a single monolayer. Our approach exploits the electromigration of the isotropic phase formed starting from the pretransitional region of the columnar-isotropic phase transition. Dewetted isotropic material accumulates to the negative electrode by applying a longitudinal electric field of about 1 V/microm. Dewetting and electromigration expose an ultrathin film, a few monolayers thick, exhibiting columnar liquid crystal order. The layers of this ultrathin film melt progressively above T(C) and can be individually exfoliated by electromigration, starting from the ninth down to the first monolayer. The analysis of the current flowing through the junction as a function of the temperature, together with the comparative imaging of the evolution of morphology, yields a detailed picture of the changes in the dimensionality of the conductive phthalocyanine film and allows us to extract the behavior of the order parameter. The phenomenon of electromigration opens interesting questions on the technological control of individual monolayers on device patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号