首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
Synthesis was performed of individual methyl [(S,2R,3S)-4-nitro-1-oxo-1,3-diphenylbutan-2-yl]-(phenyl)phosphinate from racemic β-keto phosphinate and ω-nitrostyrene under the catalysis by nickel(II) complex with (1R,2R)-N,N'-dibenzylcyclohexane-1,2-diamine.  相似文献   

2.
The reactions of hydrogen transfer from 2-propanol on acetophenone in the presence of the system [Rh(cod)Cl]2–L] (L is bisaldimine ligands based on (R,R)-1,2-cyclohexanediimine and pyridine-, quinoline-, and thiophenecarboxaldehyde) were studied. Rhodium(I) complexes with optically active ligand showed a high catalytic activity (up to 345 h–1) and moderate enantioselectivity [up to 55% ee of (R)-1-phenyethanol]. The structure of rhodium complex with N,N'-(1R,2R)-cyclohexane-1,2-diyl-bis[1-(pyridine-2-yl)methanimine] was determined on the basis of the data of 1H and 13C NMR spectroscopy and quantum chemical calculations.  相似文献   

3.
Fused tricyclic aziridines, methyl rel-(2R,2aR,3R,4R,4aR,4bS)- and rel-(2S,2aR,3R,4R,4aR,4bS)-4-hydroxy-2,4a-dimethoxyhexahydro-1-oxa-2b-azacyclopropa[cd]pentalene-3-carboxylates, have been synthesized as possible precursors to β-lactams. The product structure has been determined by two-dimensional NMR techniques in combination with computational methods.  相似文献   

4.
The (S,S)- and (R,R)-enantiomers of dimethyl 2,4-diphthalimidoglutarate were synthesized by nucleophilic substitution of bromine in dimethyl (2S,4RS)-4-bromo-N-phthaloyl-glutamate upon treatment with potassium phthalimide, followed by separation. The crystal structure of the obtained compounds was studied by X-ray diffraction. Crystals of enantiomerically pure dimethyl 4-hydroxy- and 4-phthalimido-N-phthaloylglutamates were found to possess a noticeable piezoelectric activity.  相似文献   

5.
Aqueous solutions of (S)-, (R)-, and (SR)-methionines (1–3); carbamide (4); (S)-, (R)-, and (SR)-N-carbamoylmethionines (5–7); glycoluril (8); and glycolurils containing (S)and (R)-methionine moieties (9 and 10) kept under natural and hypoelectromagnetic conditions were studied in comparison by a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry, and dielcometry). The process of selforganization and the properties of dilute solutions (1.0?10–15–10–1 mol L–1) of compounds 110 was shown for the first time to depend substantially on the structure of the solute and configuration of methionine (Met) enantiomers. In the series 13, the greatest ability to self-organization is observed for solutions of (SR)-Met in which supramolecular domains (1.0?10–5–1.0?10–1 mol L–1) and nanoassociates (1.0?10–11–1.0?10–8 mol L–1) are formed. The formation of nanoassociates in a concentration range of 1.0?10–12–1.0?10–6 mol L–1 can be responsible for the appearance of nonmonotonic concentration dependences of the physicochemical properties of solutions of N-carbamoylmethionines 57, whereas the physicochemical properties are more pronounced in solution of (S)-N-carbamoylmethionine 5 than in solutions of 6 and 7. The strongest influence of the configuration of the Met enantiomer on the ability of solution to self-organization was revealed in a series of glycolurils 9, 10: solutions of 9 with the (S)-Met moiety are disperse systems in which nanoassociates are formed in a range of 1.0?10–15–1.0?10–5 mol L–1, whereas in solutions of 10 with the (R)-Met fragment the ability to self-organization in the low-concentration range is absent.  相似文献   

6.
The reaction of N-methyl-N-trimethylsilylacetamide with silanes ClCH2SiR1R2Cl (R1, R2 = H, Me; H, Ph; Ph2) leads to the formation of (O→Si) chelate compounds with pentacoordinate silicon: N-[chloro(methyl)-silyl]methyl-, N-[chloro(phenyl)silyl]methyl-, and N-[chloro(diphenyl)silyl]methyl-N-methylacetamides. From the data of multinuclear NMR spectroscopy, the intermediates of the reaction of N-methyl-N-trimethylsilylacetamide with ClCH2SiPhHCl and ClCH2SiPh2Cl are stable in CDCl3 solution at room temperature during several days and slowly rearrange to the final (O–Si) chelate compounds.  相似文献   

7.
Hydroxymethylation of bicyclic allylsilane, (3aR,6R,6aS)-3,3a,6,6a-tetrahydro-6-(trimethylsilyl)-cyclopenta[c]furan-1-one with formaldehyde by Prins reaction proceeds via SE2' mechanism with the formation of anti-addition product. Some reactions of obtained (3aS,4S,6aR)-4-(hydroxymethyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]furan-1-one were investigated.  相似文献   

8.
This paper describes the X-ray crystal structure of the diastereomeric complexes formed by enantiopure dimethyl-substituted acridino-18-crown-6 ether (R,R)-1 and the enantiomers of 1-(1-naphthyl)ethylammonium perchlorate. We found that the heterochiral complex (R,R)-1–(S)-1-NEA is more stable than the homochiral one (R,R)-1–(R)-1-NEA. In the case of the heterochiral complex, the X-ray studies revealed a strong intermolecular ππ interaction between the naphthyl unit and the acridine moiety. However, in the case of the homochiral complex, ππ interaction was not found. We suggest that the existence or absence of the ππ interaction and the difference in steric repulsions in the diastereomers is responsible for the enantiomeric discrimination.  相似文献   

9.
Previously unknown chiral P,N-bidentate N-pyrrolylphosphines and their chelate complexes [Rh(η2-P,N)(CO)Cl] and [Pd(Allyl)(η2-P,N)]BF4 were synthesized by phosphorylation of (E,1R,2R,3R,5S)-2-[(2,6,6-trimethylbicyclo[3.1.1]heptyl-3-)iminomethyl]-1H-pyrrole. The composition and structures of the novel compounds were determined by the 1H, 13C, and 31P NMR, IR, mass spectrometry (electrospray), and elemental analysis methods. N-pyrrolylphosphines were found to have unusual electronic properties, being simultaneously more strong π-acids and σ-bases as compared to phosphites.  相似文献   

10.
Stereochemistry of addition of di- and trialkyl phosphites to C=N compounds was investigated. Reactions of achiral dialkyl phosphites with chiral aldimines as well as that of chiral di-(1R,2S,5R)-menthyl phosphite with achiral aldimines result in low diastereomeric enrichment of the addition compound. Reaction stereoselectivity increased when supplementary chiral inductor was introduced to the reaction system. Reaction of di-(1R,2S, 5R)-menthyl phosphite with (S)-α-methylbenzylbenzaldimine proceeds as concerted asymmetric induction to form practically one diastereomer of N-substituted aminophosphonic acid. However, reaction of di-(1R,2S, 5R)-menthyl phosphite with (R)-α-methylbenzylbenzaldimine proceeded as not concerted asymmetric induction, and diastereomeric enrichment of the product was low. By chemical extrapolation, absolute configuration of compounds formed was established. Tri-(1R,2S,5R)-menthyl phosphite reacts with C=N compounds in the presence of boron trifluoride etherate to form aminophosphonic acid derivatives with the absolute configuration opposite to that appearing in the reaction of di-(1R,2S,5R)-menthyl phosphite with the same C=N compounds.  相似文献   

11.
Chiral ligands—derivatives of (1R,2R)-cyclohexane-1,2-diamine, (1R,2R)-diphenylethane-1,2-diamine, and (2S,3S)-bicyclo[2.2.2]octane-2,3-diamine—and octahedral Ni(II) complexes on their basis have been synthesized.  相似文献   

12.
Cyclopropanation of methyl (2E)-3-[(1R,6S)-7,7-dimethyl-2-oxo-3-oxabicyclo[4.1.0]hept-4-en-4-yl]prop-2-enoate with dichlorocarbene occurred at the endocyclic double bond, while its reaction with diazomethane in the presence of Pd(acac)2 involved the exocyclic double bond. The resulting lactones reacted with sodium methoxide in methanol via opening of one cyclopropane fragment.  相似文献   

13.
The syntheses and crystal structures of two one-dimensional coordination polymers, [Mn(C5HO2F6)2(C16H20N2)] n (1) and [Mn(C5HO2F6)2(C20H20N2)] n (2), are described, where C5HO2F6 ? is the hexafluoro acetylacetonate anion, C16H20N2 is 1,6-bis(4-pyridyl)-hexane, and C20H20N2 is 1,4-bis[2-(3-pyridyl)ethyl]-benzene. In both phases, the metal ion lies on a crystallographic twofold axis and is coordinated by two chelating C5HO2F6 ? anions and two bridging bipyridyl ligands to generate a cis-MnN2O4 octahedron. The bridging ligands, which are completed by crystallographic inversion symmetry in both compounds, connect the metal nodes into zigzag [20 1 ] chains in 1 and contorted [001] chains in 2. Intrachain C–H???O interactions occur in 1 but not in 2, which may be correlated with the relative orientations of the ligands. Crystal data: 1, C26H22F12MnN2O4, M r = 709.40, monoclinic, C2/c (No. 15), a = 9.3475(2) Å, b = 16.6547(3) Å, c = 18.3649(4) Å, β = 91.1135(8)°, V = 2858.50(10) Å3, Z = 4, R(F) = 0.030, w R(F 2) = 0.075. 2, C30H22F12MnN2O4, M r = 757.44, monoclinic, C2/c (No. 15), a = 19.9198(2) Å, b = 10.6459(2) Å, c = 16.8185(3) Å, β = 119.8344(8)°, V = 3093.91(9) Å3, Z = 4, R(F) = 0.032, w R(F 2) = 0.078.  相似文献   

14.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

15.
Three-component heterocyclizations of trifluoro-N-(prop-2-yn-1-yl)methanesulfonamide, trifluoro-N-pheny-N-(prop-2-yn-1-yl)methanesulfonamide, and trifluoro-N,N-di(prop-2-yn-1-yl)methanesulfonamide with formaldehyde and sodium azide afforded N-{[2-(hydroxymethyl)-2H-1,2,3-triazol-4-yl]methyl}-, N-{[2-(hydroxymethyl)-2H-1,2,3-triazol-4-yl]methyl}-N-phenyl-, and N,N-bis{[2-(hydroxymethyl)-2H-1,2,3-triazol-4-yl]methyl}trifluoromethanesulfonamides as the major products together with minor 1-(hydroxymethyl)-1H-1,2,3-triazole isomers.  相似文献   

16.
Reactions of acetamide with platinum(II) diamines [Pt(N,N-DimeEn)Cl2], [Pt(Tm)Cl2], and [Pt(N,N-DimeTm)Cl2] (N,N-DimeEn = (CH3)2N(CH2)2NH2, Tm = NH2(CH2)3NH2, N,N-DimeTm = (CH3)2N(CH2)3NH2) with preliminary precipitation of chlorine ions by silver salts gave binuclear Pt(II) acetamidates [Pt2(CH3)2N(CH2)2NH2)2(μ-NHCOCH3)2](NO3)2 · H2O (I), [Pt2(NH2(CH2)3NH2)2)(μ-NHCOCH3)2](NO3)2 · H2O (II), and [Pt2(CH3)2N(CH2)3NH2)2(μ-NHCOCH3)2](HSO4)2 (III), whose crystal structures were determined. Crystals of I are monoclinic: a = 14.459(2) Å, b = 17.197(3) Å, c = 9.822(2) Å, β = 105.923(10)°, V = 3348.6(8) Å3, space group P2(1)/c, Z = 4, R hkl = 0.0419 for 6663 reflections. Complex I is a binuclear acetamidate with bridging (NHCOCH3)? ligands, one of which is bound to two Pt atoms through the N and O atoms, and the other ligand is bound only through the N atom. The Pt-Pt distance is 2.987(1) Å. Crystals of II are monoclinic: a = 10.213(7) Å, b = 13.373(9) Å, c = 16.533(11) Å, β = 97.971(9)°, V = 2236(3) Å3, space group P2(1)/n, Z = 4, R hkl = 0.557 for 6462 reflections. The Pt-Pt distance is 3.057(1) Å. Crystals of III are monoclinic: a = 10.557(12) Å, b = 18.531(2) Å, c = 14.4744(17) Å, β = 108.705(2)°, V = 2682(5) Å3, space group P2(1)/n, Z = 4, R hkl = 0.569 for 8506 reflections. The Pt-Pt distance is 3.202(1) Å. Complexes II and III are binuclear acetamidates, in which two chelating Pt(Tm) or Pt(N,N-DimeTm) moieties are coordinated through the N and O atoms of (NHCOCH3)? cis-bridges.  相似文献   

17.
It was shown that the monomeric rhodium sulfate complexes [Rh(H2O)4(SO4)]+, trans-[Rh(H2O)2(SO4)2]?, cis-[Rh(H2O)2(SO4)2]?, and [Rh(SO4)3]3? were not predominant forms in aqueous solutions. The 103Rh NMR chemical shifts of the complexes were assigned, and the conditions for their formation in solutions, concentration parameters, and acidity at which the fraction of the monomers was maximal were determined. The constants of formation of the complexes and ion pair (IP) were estimated: K IP = 8 ± 3.5, K 1 ≈ 8, K 2trans ≈ 1, K 2cis ≈ 1, and K 3 ≈ 2.  相似文献   

18.
Reaction of thiosemicarbazones of salicylaldehyde and 2-hydroxyacetophenone (H2L1 and H2L2) with [Ir(PPh3)3Cl] affords complexes of type [Ir(PPh3)2(L)(H)] (L = L1 or L2) in ethanol. A similar reaction carried out in toluene affords the [Ir(PPh3)2(L)(H)] complexes along with complexes of type [Ir(PPh3)2(L)Cl], where a chloride is coordinated to iridium instead of the hydride. The structure of the [Ir(PPh3)2(L2)(H)] and [Ir(PPh3)2(L2)Cl] complexes has been determined by X-ray crystallography. Crystal data for [Ir(PPh3)2(L2)(H)]: space group, P21/c; crystal system, monoclinic; a=12.110(2) Å, b=17.983(4) Å, c=18.437(4) Å, β=103.42(3)°, Z=4; R 1=0.0591, wR 2=0.1107. Crystal data for [Ir(PPh3)2(L2)Cl]: space group, P21/c; crystal system, monoclinic; a=17.9374(11) Å, b=19.2570(10) Å, c=24.9135(16) Å, β=108.145(5)°, Z=4; R 1=0.0463, wR 2=0.0901. In all the complexes the thiosemicarbazones are coordinated to the metal center as dianionic tridentate O, N, S-donors and the two triphenylphosphines are trans. The complexes are diamagnetic (low-spin d? 6, S=0) and show intense MLCT transitions in the visible region. Cyclic voltammetry on all the [Ir(PPh3)2(L)(H)] and [Ir(PPh3)2(L)Cl] complexes shows a quasi-reversible Ir(III)–Ir(IV) oxidation within 0.55–0.78 V vs. SCE followed by an irreversible oxidation of the thiosemicarbazone within 0.91–1.27 V vs. SCE. An irreversible reduction of the thiosemicarbazone is also observed within ?1.10 to ?1.23 V vs. SCE.  相似文献   

19.
A binary complex salt [Rh(NH3)5Cl][ReBr6] has been synthesized and investigated by X-ray diffraction analysis. Crystal data: a = 8.541(5) Å, b = 12.015(6) Å, c = 16.496(9) Å; α = 73.695(10)°, β = 89.746(9)°, γ = 89.676(9)°, V = 1624.7 Å3, space group \(P\overline 1 \), Z = 4, D x = 3.635 g/cm3, R = 0.12. It is shown that the product of thermolysis of the salt in the atmosphere of hydrogen and helium is a solid solution Rh0.5Re0.5 with hcp cell parameters a = 2.731(5) Å and c = 4.368(7) Å.  相似文献   

20.
Hetero-Diels–Alder reaction of 3-aroylpyrrolo[1,2-a]quinoxaline-1,2,4(5H)-triones with styrene afforded diastereoisomeric (5R*,6aR*)- and (5S*,6aR*)-3,5-diaryl-5,6-dihydropyrano[4′,3′:2,3]pyrrolo[1,2-a]-quinoxaline-1,2,7(8H)-triones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号