首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

2.
NMR-spectroscopic Investigations on Solvation of Lanthanoide Complexes of Tetraphenylimidodiphosphate The additional coordination of solvent molecules to chelate complexes LnA3 of rare earth ions (Ln3+) and tetraphenylimidodiphosphate ions (A?) has been studied by 1H-NMR spectroscopy. The nature of the solvent has a great influence on the spectra observed especially in the case of paramagnetic Ln3+ ions. In acetone as solvent TmA3 forms a disolvate preferably. The brutto stability constants for the additional coordination of acetone as ligands by TmA3 are β1 = (0.013 ± 0.003) mol?1 · l and β2 = (0.016 ± 0.001) mol?1 · l2.  相似文献   

3.
The complexation of the diflunisal anion (DF) by γ-cyclodextrin (γCD) and permethylatedβ-cyclodextrin (βPCD) in aqueous solution at pH 7.00 at 298.2 K, has been studied by UV-visible and19F NMR spectroscopy. The formation of 1∶1 and 1∶2 γCD inclusion complexes proceeds through the two equilibria: (K1) $${\text{DF + }}\gamma {\text{CD}} \rightleftharpoons {\text{DF}} \cdot \gamma {\text{CD}}$$ (K2) $${\text{DF}} \cdot \gamma {\text{CD + }}\gamma {\text{CD }} \rightleftharpoons {\text{ DF}} \cdot {\text{(}}\gamma {\text{CD)}}_{\text{2}} {\text{ }}$$ characterised byK 1=(5.5±0.2)×104 dm3 mol?1 andK 2=(2.3±0.2)×104 dm3 mol?1 derived from UV-visible spectrophotometric data. The analogous βPCD complexes are characterised byK 1=(6.86±0.02)×104 dm3 mol?1 andK 2=(8.75±2.7)×101 dm3 mol?1. The variation of the19F chemical shift of DF on inclusion is consistent with the formation of 1∶1 and 1∶2 complexes also. Comparisons with related systems are made.  相似文献   

4.
2-(5-Bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)aniline rapidly forms a water-soluble complex with palladium in an acetate-buffered medium at pH 3.2.The molar absorptivity of the complex is 9.84×104l mol?1 at 612 nm. The calibration graph is linear over the range of 10–100 μg l?1 palladium; the detection limit is 2 μg l?1 and the relative standard deviation is 0.6% for 100 μg l?1 palladium. The sample throughput is 50 h?1. Divalent transition metals (Fe, Ni, Co) do not interfere at levels from 2 to 10 mg l?1. Interference from copper is prevented by adding 10?3 M EDTA solution to the carrier stream. Palladium in solutions of catalysts and dental alloys can be determined selectively, sensitively and rapidly.  相似文献   

5.
A UV/visible spectrophotometric temperature-jump study of the inclusion of the rhodamine B zwitterion (RB) by β-cyclodextrin (βCD) to form a 1:1 complex (RB·βCD) in aqueous 1.00 mol dm?3 NaCl at pH 6.40 and 298.2 K yields:k 1=(1.3±0.2)×108 dm3 mol?1 s?1,k ?1=(2.2±0.5)×104 s?1, andK 1=(5.9±2.3)×103 dm3 mol?1 for the equilibrium: $${\text{RB + }}\beta {\text{CD}}{\text{RB}} \cdot \beta {\text{CD}} K_1 $$ Under the same conditions the dimerization of RB: $${\text{2}} {\text{RB}}({\text{RB}})_2 K_d $$ is characterized byK d =(1.8±1.0)×103 dm3 mol?1. The interaction of RB with αCD and γCD is weaker than with βCD, and is discussed in terms of the relative sizes of RB and the cyclodextrin annulus. Comparisons are made with the inclusions of other dyes by cyclodextrins.  相似文献   

6.
The thermal decomposition of cyanogen azide (NCN3) and the subsequent collision‐induced intersystem crossing (CIISC) process of cyanonitrene (NCN) have been investigated by monitoring excited electronic state 1NCN and ground state 3NCN radicals. NCN was generated by the pyrolysis of NCN3 behind shock waves and by the photolysis of NCN3 at room temperature. Falloff rate constants of the thermal unimolecular decomposition of NCN3 in argon have been extracted from 1NCN concentration–time profiles in the temperature range 617 K <T< 927 K and at two different total densities: k(ρ ≈ 3 × 10?6 mol/cm3)/s?1=4.9 × 109 × exp (?71±14 kJ mol?1/RT) (± 30%); k(ρ ≈ 6 × 10?6 mol/cm3)/s?1=7.5 × 109 × exp (‐71±14 kJ mol?1/RT) (± 30%). In addition, high‐temperature 1NCN absorption cross sections have been determined in the temperature range 618 K <T< 1231 K and can be expressed by σ /(cm2/mol)= 1.0 × 108 ?6.3 × 104 K?1 × T (± 50%). Rate constants for the CIISC process have been measured by monitoring 3NCN in the temperature range 701 K <T< 1256 K resulting in kCIISC (ρ ≈ 1.8 ×10?6 mol/cm3)/ s?1=2.6 × 106× exp (‐36±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 3.5×10?6 mol/cm3)/ s?1 = 2.0 × 106 × exp (?31±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 7.0×10?6 mol/cm3)/ s?1=1.4 × 106 × exp (?25±10 kJ mol?1/RT) (± 20%). These values are in good agreement with CIISC rate constants extracted from corresponding 1NCN measurements. The observed nonlinear pressure dependences reveal a pressure saturation effect of the CIISC process. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 30–40, 2013  相似文献   

7.
Gallium in the presence of surfactants (NTGE and CTA) forms with BPR a violet ternary complexes with λmax at 615 and 625 nm, respectively, with molar absorptivities of 7.0 × 104 and 1.3 × 105 liters mol?1 cm?1. These complexes can be advantageously used for the determination of gallium. The molar ratio of gallium to BPR, which is 1:1 in the binary complex, increases to 1:3 in the ternary complex. The presence of surfactants changes the number of BPR molecules bonded to gallium. This is the main factor in the increase in color intensity. Numerous metals interfere. Gallium can be separated by extraction of gallium from 7 M hydrochloric acid with diisopropyl ether.  相似文献   

8.
2,2′-Dihydroxybenzophenone thiosemicarbazone forms complexes with Cu(II) (λmax = 385 nm, ? = 8.60 × 103 liter · mol?1 · cm?1); Ni(II) (λmax = 380 nm, ? = 15.4 × 103 liter · mol?1 · cm?1); Co(II) (λmax = 380 nm, ? = 12.3 × 103 liter · mol? · cm?1); and Fe(III) (λmax = 365 nm, ? = 7.9 × 103 liter · mol?1 · cm?1) and have been applied to the analysis of these metal ions in binary, ternary, and quaternary mixtures. The determination procedures are based exclusively on the different pH values of the formation complexes, hence the extraction step is not necessary.  相似文献   

9.
The redox reaction between tris(1,10-phenanthroline)iron(II), [Fe(phen)3]2+, and azido-pentacyanocobaltate(III), [Co(CN)5N3]3? was investigated in three cationic surfactants: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) in the presence of 0.1?M NaCl at 35°C. Second-order rate constant in the absence and presence of surfactant, kw and kψ, respectively, were obtained in the concentration ranges DTAB?=?0???4.667?×?10?4?mol?dm?3, TTAB?=?0–9.364?×?10?5?mol?dm?3, CTAB?=?0???6.220?×?10?5?mol?dm?3. Electron transfer rate was inhibited by the surfactants with premicelllar activity. Inhibition factors, kw/kψ followed the trend CTAB?>?TTAB?>?DTAB with respect to the surfactant concentrations used. The magnitudes of the binding constants obtained suggest significant electrostatic and hydrophobic interactions. Activation parameters ΔH, ΔS, and Ea have larger positive values in the presence of surfactants than in surfactant-free medium. The electron transfer is proposed to proceed via outer-sphere mechanism in the presence of the surfactants.  相似文献   

10.
A validated kinetic spectrophotometric method has been developed for the determination of losartan potassium in pure and dosage forms. The method is based on oxidation of the losartan potassium with alkaline potassium permanganate at room temperature (25 ± 1 °C). The reaction is followed spectrophotometrically by measuring the increase in absorbance with time at 603 nm, and the initial rate, fixed time (at 12.0 min) and equilibrium time (at 90.0 min) methods are adopted for constructing the calibration graphs. All the calibration graphs are linear in the concentration range of 7.5–60.0 μg mL?1 and the calibration data resulted in the linear regression equations of n? = ?6.422 × 10?7 + 1.173 × 10?5 C, A =3.30 × 10?4 + 5.28 × 10?3 C and A = ?2.09 × 10?2 + 1.05 × 10?1 C for initial‐rate, fixed time and equilibrium time methods, respectively. The limits of detection for initial rate, fixed time and equilibrium time methods are 0.71, 0.21 and 0.19 μg mL?1, respectively. The activation parameters such as Ea, ΔH?, ΔS?, and ΔG? are also determined for the reaction and found to be 87.34 KJ mol?1, 84.86 KJ mol?1, 50.96 JK?1 mol?1 and ?15.10 KJ mol?1, respectively. The variables are optimized and the proposed methods are validated as per ICH guidelines. The method has been applied successfully to the estimation of losartan potassium in commercial tablets. The performance of the proposed methods was judged by calculating paired t‐ and F‐ values. The analytical results of the proposed methods when compared with those of the reference method show no significant difference in accuracy and precision and have acceptable bias.  相似文献   

11.
The native fluorescence intensity of desipramine was enhanced in the presence of β-cyclodextrin in aqueous solution. The inclusion complex formation between these compounds was studied by spectrofluorimetry. A stable complex with a 2: 1 stoichiometry of β-cyclodextrin to desipramine was formed (logβ2 = 9.29 ± 0.01). In the presence of an optimum concentration of β-cyclodextrin, the fluorescence intensity was linearly proportional to desipramine concentration in the range of 0.1–100 μg/mL (7.2 × 10?7?1.0 × 10?4 M) with a limit of detection of 7 × 10?8 M. The method was successfully applied to the detection of desipramine in its tablets.  相似文献   

12.
Abstract— The equilibrium constants, Kc, for complexation between methyl viologen dication (MV2+) and Rose Bengal, or Eosin Y, decrease with increasing ionic strength. At zero ionic strength Kc is 6500 (± 500) mol?1 dm3 for Rose Bengal and 3200 (± 200) mol?1 dm3 for Eosin Y, and these values decrease to 1500 (± 100) and 680 (± 40) mol?1 dm3, respectively, at an ionic strength of 0.1 mol dm?3. Kc is independent of pH between 4.5 and 10. ΔH is -25 (± 1) kJ mol?1 for complexation with either dye, whereas ΔS is -15 (± 3) J K?1 mol?1 for Rose Bengal, and - 23 (± 3) J K?1 mol?1 for Eosin Y. The complexation constant for Rose Bengal and the neutral viologen, 4,4'-bipyridinium-N, N'-di(propylsulphonate), (4,4'-BPS), is 420 (± 35) mol?1 dm3, and independent of ionic strength. No complexation could be observed for either Rose Bengal or Eosin with another neutral viologen, 2,2'-bipyridinium-N,N'-di(propylsulphonate), (2,2'-BPS). MV2+ quenches the triplet state of Rose Bengal with a rate constant of 7 × 109 mol?1 dm3 s?1, and this rate constant decreases slightly as ionic strength increases. The cage escape yield following quenching, Φcc is very low (Φcc= 0.02 (± 0.005), and independent of ionic strength. 4,4'-BPS quenches the triplet state of Rose Bengal with a rate constant of 2.2 (± 0.1) × 109 mol?1 dm3 s?1, and gives a cage escape yield of 0.033 (± 0.006). 2,2'-BPS quenches the Rose Bengal triplet with a rate constant of 6 (± 1) × 108 mol?1 dm3 s?1 and gives a cage escape yield of 0.07 (± 0.01). Conductivity measurements indicate that MV2+(Cl?)2 is completely dissociated at concentrations below 2 × 10?2 mol dm?3.  相似文献   

13.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

14.
The kinetics of pyridine exchange on trans-[MO2(py)4]+ have been followed by 1H-NMR in CD3NO2 for M = Re, Tc: k298S?1 = (5.5 ± 0.1) × 10?6, 0.04 ± 0.02; ΔH/kJmol?1 = 111 ± 3, 101 ± 9; ΔS/JK?1mol?1 = +28 ± 10, +68 ± 35. For the Rev complex, pyridine and oxygen exchanges have been measured simultaneously by 1H- and 17O-NMR in deuterated water: k298/s?1 = (8.6 ± 0.2) × 10?6 (py), (14.5 ± 0.3) × 10?6 (oxygen); ΔH/kJmol?1 = 111 ± 1, 91 ± 1; ΔS /JK?1mol?1 = +32 ± 3, ?32 ± 4. For both complexes, the rate law for pyridine exchange is first-order in complex and zero-order in pyridine; together with the activation parameter values, and the fact that the rate does not depend significantly on the nature of the solvent, this strongly implies the operation of a dissociative mechanism. The ratio of pyridine exchange rates for the Tc and Re complexes at room temperature is ca. 8000. The consequences of these observations for radiopharmaceutical synthesis are discussed.  相似文献   

15.
A multivariate calibration procedure based on singular value decomposition (SVD) and the Ho-Kashyap algorithm is used for the tensammetric determination of the cationic detergents Hyamine 1622, benzalkonium chloride (BACl), N-cetyl-N,N,N-trimethylammonium bromide (CTABr) and mixtures of CTABr and BACl. The sensitivity and accuracy depend strongly on the nature of the detergent. Acceptable accuracy is obtained with a two-step calculation procedure in which calibration constants for the total concentration range of interest are used to guide the choice of a more specific set of calibration constants which are valid for a much smaller concentration span. For Hyamine 1622, concentrations in the range 5 × 10?6?2 × 10?4 M could be determined with an accuracy of ± 10?6 M. For CTABr, these numbers were 3 × 10?6?2 × 10?4 M and ± 5 × 10?7 M; for BACl, they were 2 × 10?3?9 × 10?2 g l?1 and ± 1 × 10?3 g l?1. In the mixtures of CTABr and BACl, the accuracies were ± 3 × 10?6 M and × 1 × 10?3 g l?1, respectively.  相似文献   

16.
Based on the linear enhancement of formaldehyde (FA) within 7.0 ~ 1000 pmol l?1 on luminol—bovine serum albumin (BSA) chemiluminescence (CL) system, FA determination in air and beer samples using CL with flow injection (FI) was proposed. The detection limit was 2.5 pmol l?1 (3σ) and the relative standard deviations were less than 4.5% (n = 7). At a flow rate of 2.0 mL min?1, a whole analysis from sampling to washing only needed 32 s, offering a sample throughput of 112 h?1. This proposed method was successfully utilized to determine FA vapor pressure in liquid (121.8 ± 3.8 Pa), FA content in real air sample (8.93 ± 0.03 mg m?3), and FA levels in beer (199.5 ± 5.6 ~ 225.2 ± 3.5 mg l?1), giving determination recoveries from 90.7% to 109.3%. The mechanism of BSA—FA interaction was also investigated, showing FA binding to BSA was a spontaneous process mainly through hydrogen bonding and van der Waals force by FI‐CL, with binding constant K of 1.89 × 106 l mol?1 and the number of binding sites n of 0.86. Molecular docking analysis further revealed FA could enter into the pocket at subdomain IIA of BSA, with K of 1.71 × 105 l mol?1 and ΔG of ‐29.68 kJ mol?1.  相似文献   

17.
A reliable and rapid procedure for the flotation and micro-determination of Au(III) using N-cyanoacylacetaldehyde hydrazone (CyAH) is proposed. CyAH forms a blue 1:1 complex (Kf=4.1×105 mol?1l?1) with Au(III) at pH 3–7. The maximum absorbance is obtained after 7 min; instantaneously by adding 3.3×10?3 mol/l H3PO4 or by heating to 55°C. Beer's law is obeyed for 1–30 ppm of Au(III) with a molar absorptivity of 0.3×104 l mol?1 cm?1 at 550 nm.  相似文献   

18.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

19.
A method of measuring the kinetics of currents arising at the electron photoemission from a metal into electrolyte solution when affected by the u.v. laser pulses for 10?8 s at the frequency of repetitions 10–25 Hz is described. Measurements have been taken in solutions without acceptors and in those containing N2O and NO2?, NO3? ions as electron acceptors. The rate constants of capture of the solvated electrons by N2O ((6±1)×09 mol?1 s?1) and NO2? ((4.5±1)×109 mol?1 s?1) and the diffusion coefficients of OH-radicals ((1.0±0.3)×10?5 cm2 s?1) and of NO ((1.2±0.3)×10?5 cm2 s?1) are found. The oxidation rate of NO32? has been shown to decrease from 40 cm s?1 in the range of potentials ?0.55 to ?1.0 V. The rate constant of bimolecular recombination of the solvated electrons ((1.3±0.4)×1010 mol?1 s?1) has been found from the dependence of the emitted charge on the light intensity.  相似文献   

20.
The complexation of thiabendazole (TBZ) with the cucurbit[6]uril (Q[6]), cucurbit[7]uril (Q[7]) and symmetric tetramethyl-cucurbit[6]uril (TMeQ[6]) in aqueous solution has been investigated using UV–vis and fluorespectrometry. The experimental results show 1:1 host–guest inclusion complexes at pH 6.5 for all three macrocyclic hosts, and the corresponding formation constants by UV and fluorescence methods are (5.37?±?1.05)?×?104?L?mol?1 and (1.47?±?0.41)?×?104?L?mol?1 for the Q[6]-TBZ system (7.76?±?0.51)?×?104?L?mol?1 and (9.36?±?0.22)?×?104?L?mol?1 for the Q[7]-TBZ system (1.28?±?0.78)?×?104?L?mol?1 and (2.69?±?0.55)?×?104?L?mol?1 for the TMeQ[6]-TBZ system, respectively. Based on the enhancement of the fluorescence intensity of TBZ with the addition of Q[n]s in neutral media, a fluorespectrometry method for the determination of TBZ in aqueous solution in the presence of Q[n] was established. In the range of 6.0?×?10?8?mol?L?1–8.0?×?10?6?mol?L?1 a linear relationship was obtained between fluorescence intensity and TBZ concentration. The detection limit was found to be between 5.51 and 8.85?×?10?9?mol?L?1. The interference of coexisting ions was found to be slight. The proposed method has been successfully applied to the determination of TBZ in different aqueous solutions with satisfactory recoveries of 92–103%. The method seems to be suitable for environmental water analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号