首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a damped and perturbed Newton-type method for solving linear complementarity problems with positive-semidefinite matricesM. In particular, the following properties hold: all occurring subproblems are linear equations; each subproblem is uniquely solvable without any assumption; every accumulation point generated by the method solves the linear complementarity problem. The additional property ofM to be an R0-matrix is sufficient, but not necessary, for the boundedness of the iterates. Provided thatM is positive definite on a certain subspace, the method converges Q-quadratically.The author would like to thank the anonymous referees and Dr. K. Schönefeld for their valuable comments and suggestions. He is also grateful to Prof. Dr. J. W. Schmidt for his continuous interest in this study.  相似文献   

2.
The Mizuno-Todd-Ye predictor-corrector algorithm for linear programming is extended for solving monotone linear complementarity problems from infeasible starting points. The proposed algorithm requires two matrix factorizations and at most three backsolves per iteration. Its computational complexity depends on the quality of the starting point. If the starting points are large enough, then the algorithm hasO(nL) iteration complexity. If a certain measure of feasibility at the starting point is small enough, then the algorithm has iteration complexity. At each iteration, both feasibility and optimality are reduced exactly at the same rate. The algorithm is quadratically convergent for problems having a strictly complementary solution, and therefore its asymptotic efficiency index is . A variant of the algorithm can be used to detect whether solutions with norm less than a given constant exist.This work was supported in part by the National Science Foundation under grant DMS-9305760.  相似文献   

3.
《Optimization》2012,61(5):757-773
In this article, we propose a new continuation method for solving the linear complementarity problem (LCP). The method solves one system of linear equations and carries out only a one-line search at each iteration. The continuation method is based on a modified smoothing function. The existence and continuity of a smooth path for solving the LCP with a P 0 matrix are discussed. We investigate the boundedness of the iteration sequence generated by our continuation method under the assumption that the solution set of the LCP is nonempty and bounded. It is shown to converge to an LCP solution globally linearly and locally superlinearly without the assumption of strict complementarity at the solution under suitable assumption. In addition, some numerical results are also reported in this article.  相似文献   

4.
Recently, Zhang, Tapia, and Dennis (Ref. 1) produced a superlinear and quadratic convergence theory for the duality gap sequence in primal-dual interior-point methods for linear programming. In this theory, a basic assumption for superlinear convergence is the convergence of the iteration sequence; and a basic assumption for quadratic convergence is nondegeneracy. Several recent research projects have either used or built on this theory under one or both of the above-mentioned assumptions. In this paper, we remove both assumptions from the Zhang-Tapia-Dennis theory.Dedicated to the Memory of Magnus R. Hestenes, 1906–1991This research was supported in part by NSF Cooperative Agreement CCR-88-09615 and was initiated while the first author was at Rice University as a Visiting Member of the Center for Research in Parallel Computation.The authors thank Yinyu Ye for constructive comments and discussions concerning this material.This author was supported in part by NSF Grant DMS-91-02761 and DOE Grant DE-FG05-91-ER25100.This author was supported in part by AFOSR Grant 89-0363, DOE Grant DE-FG05-86-ER25017, and ARO Grant 9DAAL03-90-G-0093.  相似文献   

5.
By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under strict complementarity conditions. This work is supported by National Natural Science Foundation of China (No. 10671126) and Shanghai Leading Academic Discipline Project (S30501).  相似文献   

6.
Path-following algorithms take at each iteration a Newton step for approaching a point on the central path, in such a way that all the iterates remain in a given neighborhood of that path. This paper studies the case in which each iteration uses a pure Newton step with the largest possible reduction in complementarity measure (duality gap). This algorithm is known to converge superlinearly in objective values. We show that with the addition of a computationally trivial safeguard it achieves Q-quadratic convergence, and show that this behaviour cannot be proved by usual techniques for the original method. Research done while visiting Delft University of Technology, and supported in part by CAPES-Brazil.  相似文献   

7.
We consider a modification of a path-following infeasible-interior-point algorithm described by Wright. In the new algorithm, we attempt to improve each major iterate by reusing the coefficient matrix factors from the latest step. We show that the modified algorithm has similar theoretical global convergence properties to those of the earlier algorithm while its asymptotic convergence rate can be made superquadratic by an appropriate parameter choice. The work of this author was based on research supported by the Office of Scientific Computing, US Department of Energy, under Contract W-31-109-Eng-38. The work of this author was based on research supported in part by the US Department of Energy under Grant DE-FG02-93ER25171.  相似文献   

8.
A new multiplier method for solving the linear complementarity problem LCP(q, M) is proposed. By introducing a Lagrangian of LCP(q, M), a new smooth merit function ϑ(x, λ) for LCP(q, M) is constructed. Based on it, a simple damped Newton-type algorithm with multiplier self-adjusting step is presented. When M is a P-matrix, the sequence {ϑ(x k, λ k)} (where {(x k, λ k)} is generated by the algorithm) is globally linearly convergent to zero and convergent in a finite number of iterations if the solution is degenerate. Numerical results suggest that the method is highly efficient and promising. Selected from Numerical Mathematics (A Journal of Chinese Universities), 2004, 26(2): 162–171  相似文献   

9.
Recently, based upon the Chen-Harker-Kanzow-Smale smoothing function and the trajectory and the neighbourhood techniques, Hotta and Yoshise proposed a noninterior point algorithm for solving the nonlinear complementarity problem. Their algorithm is globally convergent under a relatively mild condition. In this paper, we modify their algorithm and combine it with the superlinear convergence theory for nonlinear equations. We provide a globally linearly convergent result for a slightly updated version of the Hotta-Yoshise algorithm and show that a further modified Hotta-Yoshise algorithm is globally and superlinearly convergent, with a convergence -order , under suitable conditions, where is an additional parameter.

  相似文献   


10.
Recently, Ye et al. proved that the predictor-corrector method proposed by Mizuno et al. maintains -iteration complexity while exhibiting the quadratic convergence of the dual gap to zero under very mild conditions. This impressive result becomes the best-known in the interior point methods. In this paper, we modify the predictor-corrector method and then extend it to solving the nonlinear complementarity problem. We prove that the new method has a -iteration complexity while maintaining the quadratic asymptotic convergence.  相似文献   

11.
An infeasible-interior-point algorithm for linear complementarity problems   总被引:3,自引:0,他引:3  
We modify the algorithm of Zhang to obtain anO(n2L) infeasible-interior-point algorithm for monotone linear complementarity problems that has an asymptoticQ-subquadratic convergence rate. The algorithm requires the solution of at most two linear systems with the same coefficient matrix at each iteration.This research was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

12.
A new polynomial time method for a linear complementarity problem   总被引:2,自引:0,他引:2  
The purpose of this paper is to present a new polynomial time method for a linear complementarity problem with a positive semi-definite matrix. The method follows a sequence of points. If we generate the sequence on a path, we can construct a path following method, and if we generate the sequence based on a potential function, we can construct a potential reduction method. The method has the advantage that it requires at most iterations for any initial feasible point whose components lie between 2–O(L) and 2O(L).Research was supported in part by Grant-in-Aids for Encouragement of Young Scientists (63730014) and for General Scientific Research (63490010) of The Ministry of Education, Science and Culture.  相似文献   

13.
In this note, we discuss some properties of a quadratic formulation for linear complementarity problems. Projected SOR methods proposed by Mangasarian apply to symmetric matrices only. The quadratic formulation discussed here makes it possible to use these SOR methods for solving nonsymmetric LCPs. SOR schemes based on this formulation preserve sparsity. For proper choice of a free parameter, this quadratic formulation also preserves convexity. The value of the quadratic function for the solution of original LCP is also known.  相似文献   

14.
Based on a well-known reformulation of the linear complementarity problem (LCP) as a nondifferentiable system of nonlinear equations, a Newton-type method will be described for the solution of LCPs. Under certain assumptions, it will be shown that this method has a finite termination property, i.e., if an iterate is sufficiently close to a solution of LCP, the method finds this solution in one step. This result will be applied to a recently proposed algorithm by Harker and Pang in order to prove that their algorithm also has the finite termination property.  相似文献   

15.
It has been shown by Lemke that if a matrix is copositive plus on n , then feasibility of the corresponding linear complementarity problem implies solvability. In this article we show, under suitable conditions, that feasibility of ageneralized linear complementarity problem (i.e., defined over a more general closed convex cone in a real Hilbert space) implies solvability whenever the operator is copositive plus on that cone. We show that among all closed convex cones in a finite dimensional real Hilbert Space, polyhedral cones are theonly ones with the property that every copositive plus, feasible GLCP is solvable. We also prove a perturbation result for generalized linear complementarity problems.This research has been partially supported by the Air Force Office of Scientific Research under grants #AFOSR-82-0271 and #AFOSR-87-0350.  相似文献   

16.
We prove the superlinear convergence of the primal-dual infeasible interior-point path-following algorithm proposed recently by Kojima, Shida, and Shindoh and by the present authors, under two conditions: (i) the semidefinite programming problem has a strictly complementary solution; (ii) the size of the central path neighborhood approaches zero. The nondegeneracy condition suggested by Kojima, Shida, and Shindoh is not used in our analysis. Our result implies that the modified algorithm of Kojima, Shida, and Shindoh, which enforces condition (ii) by using additional corrector steps, has superlinear convergence under the standard assumption of strict complementarity. Finally, we point out that condition (ii) can be made weaker and show the superlinear convergence under the strict complementarity assumption and a weaker condition than (ii).  相似文献   

17.
We give a bound on the distance between an arbitrary point and the solution set of a monotone linear complementarity problem in terms of a condition constant that depends on the problem data only and a residual function of the violations of the complementary problem conditions by the point considered. When the point satisfies the linear inequalities of the complementarity problem, the residual consists of the complementarity condition plus its square root. This latter term is essential and without it the error bound cannot hold. We also show that another natural residual that has been employed to bound errors for strictly monotone linear complementarity problems fails to bound errors for the monotone case considered here. Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This material is based on research sponsored by National Foundation Grant DCR-8420963 and Air Force Office of Scientific Research Grant AFOSR-ISSA-85-00080.  相似文献   

18.
提出了求解非对称线性互补问题的并行二级多分裂迭代算法,并证明了该算法的收敛性,最后通过数值实验验证了算法的有效性和可行性.  相似文献   

19.
One motivation for the standard primal-dual direction used in interior-point methods is that it can be obtained by solving a least-squares problem. In this paper, we propose a primal-dual interior-point method derived through a modified least-squares problem. The direction used is equivalent to the Newton direction for a weighted barrier function method with the weights determined by the current primal-dual iterate. We demonstrate that the Newton direction for the usual, unweighted barrier function method can be derived through a weighted modified least-squares problem. The algorithm requires a polynomial number of iterations. It enjoys quadratic convergence if the optimal vertex is nondegenerate.The research of the second author was supported in part by ONR Grants N00014-90-J-1714 and N00014-94-1-0391.  相似文献   

20.
An interior point method for monotone linear complementarity problems acting in a wide neighborhood of the central path is presented. The method has -iteration complexity and is superlinearly convergent even when the problem does not possess a strictly complementary solution. Mathematics Subject Classification (2000): 49M15, 65K05, 90C33 Work supported by the National Science Foundation under Grant No. 0139701. An erratum to this article is available at.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号