首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tolbutamide-hydroxypropyl-gamma-cyclodextrin (TBM-HPGCD) interaction has been investigated in an aqueous environment and in the solid state. The solubility of TBM was increased in accord with the amount of HPGCD added to the aqueous medium forming a soluble inclusion compound. The phase solubility diagram obtained was of A(L) type. Physical mixtures and kneaded systems of the drug and cyclodextrin derivative were prepared in 1:1 and 1:2 drug/cyclodextrin mol/mol ratio. All solid binary systems were characterised by hot-stage microscopy (HSM), differential scanning calorimetry (DSC), thermogravimetry (TG) and X-ray powder diffractometry (XRD). An inclusion complex was formed in both of the kneaded systems. In the 1:2 kneaded system, the entire drug was included in the cyclodextrin cavity, while, in the 1:1 kneaded system only a part of the drug formed an inclusion complex with the cyclodextrin. A significant improvement in the dissolution of the drug was obtained from the kneaded systems in comparison with that of the pure TBM and physical mixtures. However, there was no significant difference between the dissolution profiles of the two kneaded systems. The study suggests that an inclusion complex was obtained both in aqueous solution and in solid state.  相似文献   

2.
An inclusion complex was prepared between the local anesthetic lidocaine (LDC) and hydroxypropyl-β-CD (HP-β-CD). The complex was characterized by thermal analysis (differential scanning calorimetry, DSC), UV absorption and high-pressure liquid chromatography (HPLC). DSC results were indicative of complexation, due to the loss of the characteristic endothermic peak of LDC (77 °C). Phase-solubility diagrams allowed the determination of the association constant between LDC and HP-β-CD (35.7 ± 4.7 M−1). The rate of LDC release decreased after complexation and thermodynamic parameters from the HPLC studies (ΔG° = −2.65 kJ/mol) revealed that a stable complex was formed.  相似文献   

3.
The inclusion interaction between chloramphenicol and heptakis (2,6-di-O-methyl)-β-cyclodextrin (DMBCD) had been investigated by phase solubility and spectroscopic methods such as UV-vis spectroscopy, circular dichroism, Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance spectroscopy ((1)H NMR) as well as 2D-ROESY spectra. Phase solubility analysis showed A(L)-type diagram with DMBCD, which suggested the formation of 1:1 inclusion complex of DMBCD with chloramphenicol. The estimated stability constant (K(s)) of the inclusion complex of chloramphenicol with DMBCD is 493 M(-1) at 293 K. The solubility enhancement of chloramphenicol in the presence of DMBCD is stronger than that in the presence of β-CD, HP-β-CD and M-β-CD. The results obtained by spectroscopic methods showed that the nitrophenyl moiety of chloramphenicol is deeply inserted into inner cavity of DMBCD from the narrow rim of DMBCD, which the inclusion model of chloramphenicol with DMBCD differs from that with β-CD.  相似文献   

4.
Among the potent anticancer agent, Local Anesthetics (LA) have been found to be efficient against many different types of cancer cell lines. However, the major disadvantage associated with the use of LA its low systemic bio-availability when administered due to its poor aqueous solubility. Our present work concentrates on improving the bio-availability by complexing with β-Cyclodextrin. We synthesized the inclusion complexes of selective LAs by co-precipitation method which is an efficient method among others and characterized the formulation of complex by UV, steady state and time resolved fluorescence studies. The optimization and orientation of the free LA and the complexes have also been studied by molecular docking with the help of Patch-Dock server. An in vitro study of cytotoxicity against breast cancer cell line is performed. Our study shows the formation of the complex with 1:1 ratio and the result showed that the improved CT activity for LDC:β-CD than the free LDC. For PRC and its complex with β-CD has no much activity even after forming a complex.  相似文献   

5.
Interaction between Cycloamylose and Various Drugs   总被引:4,自引:0,他引:4  
Cycloamylose (CA), has a cyclic structure like cyclodextrin (CD), but has a very large number of molecules, and its physical properties are still unclear. The CA used in this study was supplied by Ezaki Glico Co., Ltd, and was a mixture (mean molecular weight 7720). Predonisolone, cholesterol, digoxin, digitoxin and nitroglycerin were chosen as guest molecules. We evaluated the interaction between CA and the guest molecules using the solubility method described by Higuchi and Connors. The concentration of each dissolved guest molecule was determined by HPLC. This solubility method was performed at a temperature of 5 °C. The phase solubility diagrams of drugs with CA showed type A or type B profiles. Cholesterol, digoxin, digitoxin and predonisolone formed a complex with CA, but nitroglycerin did not.  相似文献   

6.
Undecylglycerylether-modified silicone (GES; the glycerylether-type surfactant with a silicone segment and alkyl chains (carbon number, 11) as the hydrophobic portion) forms a molecular aggregate (M.A.) with a small amount of water. This M.A. is similar to the reversed hexagonal liquid crystal formed by alpha-mono long-chain alkylglycerylether (3-isooctadecyloxy-1,2-propanediol; GE). From the investigation of the phase behavior in the water/GES/polydimethylsiloxane (PDMS) ternary system, a wide three-phase region of water (W)+M.A.+oil (O) was observed. As this M.A. is insoluble in PDMS and easily orients in the interface between water and PDMS, the high water content silicone W/O emulsion using GES as a surfactant is well stabilized. However, as the PDMS content increased this W/O emulsion became less stable. In order to improve this stability, mixtures of GES and polyoxyethylene-modified silicone (PS) were applied to the silicone emulsion as co surfactant. By application of a PS with a methyl group at the end cap of the polyoxyethylene chain (PSM), the emulsion became most stable at a GES/PSM ratio of 1 : 2, and at the same time, the interfacial tension between the oil phase and the water phase became minimal. The reason for this was studied by the measurement of spin-lattice relaxation times (T(1)) of the alkyl chains of GES in the GES/PS/water system by (13)C NMR. We assumed that the W/O silicone emulsions were stabilized by the efficient orientation of the aggregates in the interface between the silicone phase and the water phase by using PSM as a cosurfactant. Copyright 2001 Academic Press.  相似文献   

7.
An inclusion complex of hydroxymethylferrocene (FeMeOH) with β-cyclodextrin (β-CD) was prepared in the solid state by different techniques such as physical mixture, coprecipitation, kneading and freeze-drying. The formation of the inclusion complex was confirmed by X-ray Powder Diffractometry and Fourier Transform-Infrared spectroscopy. In aqueous solution, the 1:1 stoichiometry was established by a Job plot. The inclusion complex formation was also investigated by NMR and the stability constant (Kb) of the complex was determined to be 478 M?1, which is in agreement with that obtained with UV-Vis tritation (Kb = 541.3 M?1). The phase solubility study showed a diagram classified as Bs type and that the solubility of FeMeOH was slightly increased in the presence of β-CD. Furthermore, utilizing phase solubility diagram data, the Kb was estimated to be equal to 528.0 M?1. The cytotoxic activity of FeMeOH and its complexation product with β-CD was determined using the MTT-assay on MDA-MB-231 cell line, showing that the inclusion complex has a higher capability of inhibiting cell growth compared to that of pure FeMeOH.  相似文献   

8.
The interaction of cholesterol with several cyclodextrins (CDs) was investigated in water using solubility method. It was found that heptakis (2,6-di-O-methyl)-beta-CD (DOM-beta-CD) forms two types of soluble complex, with molar ratios of 1 : 1 and 1 : 2 (cholesterol : DOM-beta-CD), and neither a soluble nor insoluble complex is formed between cholesterol and alpha-CD, beta-CD, and gamma-CD, although a minor soluble complex formation was observed between cholesterol and 2-hydroxylpropyl-beta-CD. The thermodynamic parameters for 1 : 1 and 1 : 2 complex formation of cholesterol with DOM-beta-CD obtained from the changes in K with temperature are as follows: DeltaG degrees (1 : 1)=-11.6 kJ/mol at 25 degrees C (K(1 : 1)=1.09x10(2) M(-1)); DeltaH degrees (1 : 1)=-3.38 kJ/mol; TDeltaS degrees (1 : 1)=8.25 kJ/mol; DeltaG degrees (1 : 2)=-27.1 kJ/mol at 25 degrees C (K(1 : 2)=5.68x10(4) M(-1)); DeltaH degrees (1 : 2)=-3.96 kJ/mol; and TDeltaS degrees (1 : 2)=23.2 kJ/mol. The formation of the 1 : 2 complex occurred much more easily than that of the 1 : 1 complex. The driving force for 1 : 1 and 1 : 2 complex formation was considered to be mainly hydrophobic interaction. Also, based on the measurements of proton nuclear magnetic resonance spectra and studies with Corey-Pauling-Koltun atomic models, the probable structutures of the 1 : 2 complex were estimated.  相似文献   

9.
This study aimed to investigate the effect of β-cyclodextrin on aqueous solubility and dissolution rate of valdecoxib and also to get an insight of molecular interactions involved in formation of valdecoxib‐β-cyclodextrin inclusion complex. Phase solubility analysis indicated complex with possible stoichiometry of 1:1 and a stability constant of 234.01 M−1. Thermodynamic studies in water indicated exothermic nature of inclusion complexation.␣Valdecoxib‐β-cyclodextrin complexes (1:1 M) were prepared by kneading method, solution method and␣freeze–drying method. The complex was characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (P-XRD), Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance␣(1H-NMR) spectroscopy. Molecular modeling was used to help establish the mode of interaction of β-cyclodextrin with valdecoxib. 1H-NMR analysis suggested that the unsubstituted phenyl ring of valdecoxib display favorable interaction with the hydrophobic cavity of β-cyclodextrin, which was confirmed by molecular dynamic simulations. An inclusion complex model has been established for explaining the observed enhancement of solubility of valdecoxib in water by β-cyclodextrin. Dissolution studies in water showed that the valdecoxib in freeze-dried complex dissolved much faster than the uncomplexed drug and physical mixture. This improvement in dissolution rate is attributed to the increased solubility and wettability due to encapsulation along with decreased crystallanity caused by complex formation, which is evident by DSC and P-XRD studies.  相似文献   

10.
An inclusion complex between the agrochemical chloropropham (CIPC) and β-cyclodextrin (β-CD) was prepared. A 2:1 host-guest stoichiometry was conformed by elemental analysis. From the phase solubility studies, the calculated stepwise stability constants were K(1)=224.6L/mol and K(2)=939.2L/mol, respectively. FT-IR, thermoanalysis and (1)H NMR spectra were applied to characterize the complex. It was speculated that the inclusion mode was two β-CD cavities included the chlorophenyl and the isopropyl moiety of one CIPC molecule, which was in agreement with the most predominant configuration optimized by molecular modeling. By complexation with β-CD, the water solubility and the thermal stability of CIPC were prominently improved.  相似文献   

11.
The formation of inclusion complexes with para-sulfonated calix[n]arene (PSC[n]A) was studied for carbamazepine (CBMZ), a poorly water soluble anticonvulsant drug. The effect of PSC[4]A and PSC[6]A on aqueous solubility of carbamazepine was studied extensively. The complete complexation of the drug was achieved after 48 h of shaking with PSC[n]A in water and evaporation of water to get solid complex. The interaction between PSC[n]A and CBMZ in solid state inclusion complexes was accomplished by aqueous phase solubility studies, HPLC, DSC, PXRD, FTIR, UV–Vis, and FT-Raman spectroscopy. The solubility of CBMZ increases as a function of PSC[n]A concentration. The results of the two phase solubility experiments are in good conformity to signify the formation of 1:1 (PSC[6]A:CBMZ) and 2:1 PSC[4]A:CBMZ complexes. The order of dissolution rate of CBMZ is inclusion complex > physical mixture > drug alone. The purpose of this study was to enhance solubility resulting in high dissolution rate and bioavailability of this essentially water insoluble drug.  相似文献   

12.
The interaction between cucurbit[8]uril(Q[8]) and oroxin B(ORB) was investigated by UV-visible(UV-Vis) spectroscopy, isothermal titration calorimetry(ITC), mass spectrum(MS) and nuclear magnetic resonance(NMR) spectroscopy. The results showed that ORB formed a 2:1 inclusion complex with Q[8] with a binding constant of 8.266×105 L2·mol-2. ORB had good scavenging ability for 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate)(ABTS) free radicals(IC50=5.74 μmol/L) and the addition of Q[8] did not significantly affect the antioxidant activity of ORB(IC50=5.76 μmol/L). A phase solubility experiment revealed a 1.86-fold increase in the solubility of ORB when c(Q[8])=100 μmol/L. In vitro drug release experiments showed that the release rate for ORB@Q[8] complex was lower than that of ORB in artificial intestinal juice, and higher than that of ORB in artificial gastric juice.  相似文献   

13.
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV–Vis, 1H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a BS-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 ± 837 M?1. Stoichiometry was established by the UV spectrophotometer using Job’s plot method and, also confirmed by molecular modeling. Data from 1H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-β-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.  相似文献   

14.
The alpha-helical coiled coils have a representative amino acid sequence of (abcdefg)(n) heptad repeats. We previously reported that two peptides named IZ-2A and IZ-2W formed an (IZ-2A)(2)/IZ-2W heterotrimer with an Ala-Ala-Trp interaction in the hydrophobic core. In this paper, we describe the selective formation of AAB- and ABC-type heterotrimers. To increase the selectivity of the AAB-type heterotrimeric formation, Lys residues at the f position were mutated to either an Ala or a Gln residue to form IZ-2A(fA) or IZ-2W(fQ). Separately, both IZ-2A(fA) and IZ-2W(fQ) have a random structure at pH 7 and 20 degrees C. However, together IZ-2A(fA) and IZ-2W(fQ) form a 2:1 complex with a thermal transition midpoint (Tm) of 48 degrees C. This procedure was applied to prepare the ABC-type heterotrimer, in which two sets of Ala-Ala-Trp interactions were designed in the hydrophobic core. Interhelical interaction between the e and g positions and the alpha-helical propensity of the amino acid at the f position were also considered in the design. The resultant three peptides selectively formed the ABC-type heterotrimer with a Tm of 51 degrees C. Other peptide combinations had random coil properties.  相似文献   

15.
This study aimed to investigate the effect of hydroxypropyl methylcellulose on the complexation of fenofibrate and hydroxypropyl-β-cyclodextrin (HP-β-CD). Initially, phase solubility studies with an excess amount of drug in the HP-β-CD solutions with and without hydroxypropyl methylcellulose (HPMC) were investigated. Both of the binary and ternary complexes were prepared by ball-milling. The complexes were characterized by Fourier transform infrared spectroscopy (FI-IR), X-ray powder diffraction (XPRD), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (1H-NMR). The AL type phase-solubility diagram revealed that the complexes of fenofibrate and HP-β-CD were formed with molecular ratio of 1:1. The results of FT-IR, XPRD, DSC and 1H NMR analysis show the formulation of inclusion complexes. In conclusion, the interaction occurrs between fenofibrate and HP-β-CD in the complexes, and the existence of HPMC effectively improves the complexation efficiency and stability constant. The in vitro dissolution test suggests ternary complex is superior to binary complex in terms of the release of fenofibrate.  相似文献   

16.
The interaction of cholesterol with heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin (TOM-beta-CyD) was investigated in water using solubility method. It was found that TOM-beta-CyD forms two kinds of soluble complexes, with molar ratios of 1:1 and 1:2 (cholesterol:TOM-beta-CyD). The thermodynamic parameters for 1:1 and 1:2 complex formation of cholesterol with TOM-beta-CyD were: DeltaG0(1:1)=-11.0 kJ/mol at 25 degrees C (K1:1=7.70 x 10 M(-1)); DeltaH0(1:1)=-1.28 kJ/mol; TDeltaS0(1:1)=9.48 kJ/mol; DeltaG0(1:2)=-27.8 kJ/mol at 25 degrees C (K1:2)=7.55 x 10(4) M(-1)); DeltaH0(1:2)=-0.57 kJ/mol; TDeltaS0(1:1)=27.3 kJ/mol. The formation of the 1:2 complex occurred much more easily than that of the 1:1 complex. The driving force for 1:1 and 1:2 complex formation was suggested to be exclusively hydrophobic interaction. Based on the measurements of proton nuclear magnetic resonance spectra and studies with Corey-Pauling-Koltun atomic models, the probable structures of the 1:2 complex were estimated. In addition, the interaction of TOM-beta-CyD with cholesterol was compared with that of heptakis (2,6-di-O-methyl)-beta-CyD (DOM-beta-CyD). The interaction of TOM-beta-CyD is more hydrophobic than that of DOM-beta-CyD, and the life time of the complexed TOM-beta-CyD is sufficiently long to give separated signals, at the NMR time scale, which differs from that of complexed DOM-beta-CyD.  相似文献   

17.
In the present study influence of nature of selected cyclodextrins (CDs) and of methods of preparation of drug–CD complexes on the oral bioavailability, in vitro dissolution studies and pharmacodynamic activity of a sparingly water soluble drug rosuvastatin (RVS) was investigated. Phase solubility studies were conducted to find the interaction of RVS with β-CD and its derivatives, which indicated the formation of 1:1 stoichiometric inclusion complex. The apparent stability constant (K1:1) calculated from phase solubility diagram were in the rank order of β-CD < hydroxypropyl-β-cyclodextrin (HP-β-CD) < randomly methylated-β-cyclodextrin (RM-β-CD). Equimolar drug–CD solid complexes prepared by different methods were characterized by the Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). FTIR study demonstrated the presence of intermolecular hydrogen bonds and ordering of the molecule between RVS and CDs in inclusion complexes. DSC and XRD analysis confirmed formation of inclusion complex by freeze dried method with HP-β-CD and RM-β-CD. Aqueous solubility and dissolution studies indicated improved dissolution rates of prepared complexes in comparison with drug alone. Moreover, CD complexes demonstrated of significant improvement in reducing total cholesterol and triglycerides levels as compared to pure drug. However the in vivo results only partially agreed with those obtained from phase solubility studies.  相似文献   

18.
The interaction of a newly developed Helicobacter pylori eradicating agent (TG44, 4-methylbenzyl-4'-[trans-4-(guanidinomethyl)cyclohexylcarbonyloxy]biphenyl-4-carboxlylate monohydrochloride) with beta-cyclodextrin (beta-CyD) in aqueous solution and in solid state was studied to gain insight into the high in-vivo H. pylori eradicating activity of TG44/beta-CyD complex. The interaction was studied by the solubility method, spectroscopic methods, powder X-ray diffractometry and differential scanning colorimetry (DSC). TG44 gave A(L)-type phase solubility diagram with beta-CyD in water, showing a linear increase in solubility of the drug up to 8 mM beta-CyD concentration. The solubility of TG44 (0.04 mM in water at 25 degrees C) increased about 70-folds at 8 mM beta-CyD. Ultraviolet, circular dichroism, fluorescence and (1)H-nuclear magnetic resonance spectroscopic studies indicated that TG44 forms the inclusion complex with beta-CyD in a 1:1 stoichiometry and the biphenyl moiety of TG44 is preferably included in the beta-CyD cavity in water. The Giordano plot made by monitoring changes in the fusion enthalpy of TG44 (about 184 degrees C) suggested that TG44 forms the 1:1 complex with beta-CyD in the solid state. The TG44/beta-CyD solid complex in a 1:1 stoichiometry was prepared by the grinding and spray-drying methods and confirmed by powder X-ray diffractometry and DSC that the complex is in an amorphous state. The initial dissolution rate of TG44/beta-CyD complex was significantly faster than those of the drug alone and the physical mixture of both components, maintaining higher supersaturated concentrations of the drug for a long time. The results suggested that the higher eradicating activity of TG44/beta-CyD complex to Helicobacter pylori, compared with that of the drug alone, is attributable at least partly to the faster dissolving property of the complex and its ability to maintain the supersaturated state of the drug in the gastric fluid.  相似文献   

19.
采用溶解度法研究了不同pH值下氯诺昔康与中性及电荷型β-环糊精衍生物的包合作用.结果表明,氯诺昔康与3种环糊精都形成了1:1的包合物.以包合常数作为包合作用的量度,在酸性和中性条件下包合能力较碱性强,其中磺丁醚-β-环糊精(SBE移CD)在酸性条件下包合常数最大.电荷型伊环糊精除了通常的疏水作用力为主客体间包合驱动力外,还存在额外的静电包合作用力.  相似文献   

20.
New complex [Mn (SB)2(DMF)2] [W (CN)8] hereafter referred to as complex 1 , which was prepared by self–assembly of [Mn (SB)2(DMF)2]3+ and [W (CN)8]3− and structurally characterized by elemental analysis, infrared (IR) and single crystal X–ray techniques (H2SB is Schiff base derived from the condensation of salicylaldehyde and N,N–diethylethylenediamine and DMF is dimethylformamide). The structure consists of 1–D supramolecular chains and further stacks to give a 3–D supramolecular architecture whose molecular fragments are linked by hydrogen bond as well as C − H···π interactions between [Mn (SB)2(DMF)2]3+ and [W (CN)8]3−. An underlying net for the representation consists of two types of fragments with 1,4 M5–1 and 1,8 M9–1 topologies and further illustration of the molecular network in terms of a graph−theory approach using simplification procedure resulted in the underlying net of 2C1topological type in the complex 1 . Magnetic susceptibility measurements of complex 1 was carried out in the temperature range 2–300 K, indicates the presence of either magnetic anisotropy zero field splitting, the effect of intramolecular interactions, or both. Complex 1 follows the Curie–Weiss law with Curie constant value of 3.43 cm3mol−1K, and the slight negative Weiss constant (−0.60 K) value indicates the predominant antiferromagnetic magnetic exchange interactions. The magnetic properties of Title complex was investigated thoroughly and showed that ferromagnetic interaction between W(V) and Mn (III) operate via the intramolecular H–bonding interaction between cyanide nitrogens and a hydrogen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号