首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
孙博  刘绍军  段素青  祝文军 《物理学报》2007,56(3):1598-1602
采用基于密度泛函理论的平面波赝势方法,计算了Fe的几种不同晶体结构的总能量曲线,对HCP结构下晶体结构参数c/a随压强的变化关系做计算分析. 能量计算精度取为0.01 eV/atom. 计算得出: 1) 零温下Fe从bcc到hcp结构的相变压强约为15 GPa,与实验结果相一致; 2) 压强的升高会导致Fe的磁矩减小,最终破坏Fe的磁性; 3) 压强升高引起hcp晶体结构参数c/a缓慢增大,而在地核压强(135—360 GPa)范围内,c/a取常量约1.59能够满足计算精度的要求. 关键词: 第一性原理计算 压力效应 Fe的结构与物性  相似文献   

2.
A modified analytic embedded atom method (MAEAM) potential is constructed for fcc updelta-Pu. Molecular dynamics (MD) simulations with the potential are performed to investigate the interactions between two symmetrical tilt grain boundaries (GBs) and point defects such as He atom, vacancy and self-interstitial atom (SIA) in Pu. The calculated results show that point defect formation energies are on average lower than those in the lattice but variations from site to site along the GBs are very remarkable. Both substitutional and interstitial He atoms are trapped at GBs. Interstitial He atom is more strongly bound at the GB core than the substitutional He atom. The binding energy of SIA at GB core is higher than those of He atom and vacancy. GB core can bind many He atoms and SIAs due mainly to the fact that it contains many vacancies. Compared with He atom and SIA, the vacancy far from GB core is difficult to diffuse into the core. The GBs can act as sinks and sources of He atoms and SIAs, which may be a reason for the swelling of Pu after a period of self-irradiation because of the higher concentration of vacancy in the bulk.  相似文献   

3.
In this paper, the stability of various atomic configurations containing a self-interstitial atom (SIA) in a model representing α-iron is investigated. From the energy panorama maps of the SIA located in possible non-equivalent interstitial sites, six relatively stable self-interstitial sites are found, whose structures and formation energies have been described and calculated using the modified analytical embedded atom method and molecular dynamics. The simulation results indicate that the [110] dumbbell interstitial is the energetically most favorable configuration, which is in good agreement with the experimental and ab initio results, and the distances between two displaced atoms that compose the [100], [110] and [111] direction dumbbells have been computed to be 0.68a, 0.65a and 0.29a, respectively, not all being about 0.75a apart. The relaxed displacements up to the fifth-nearest-neighbor atoms around the SIA in O interstitial position are also calculated.  相似文献   

4.
A brief introduction of the surface model based on the empirical electron theory (EET) and the dangling bond analysis method (DBAM) is presented in this paper. The anisotropy of spatial distribution of covalent bonds of hexagonal close-packed (hcp) metals such as Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Cd, Hf, and Re, has been analyzed. And under the first-order approximation, the calculated surface energy values for low index surfaces of these hcp-metals are in agreement with experimental and other theoretical values. Correlated analysis showed that the anisotropy of surface energy of hcp-metals was related with the ratio of lattice constants (c/a). The calculation method for the research of surface energy provides a good basis for models of surface science phenomena, and the model may be extended to the surface energy estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence electronic structure (VES) is generated from EET.  相似文献   

5.
To elucidate the effect of stacking fault energies (SFEs) on defect formation by the collision cascade process for face-centred cubic metals, we used six sets of interatomic potentials with different SFEs while keeping the other properties almost identical. Molecular dynamic simulations of the collision cascade were carried out using these potentials with primary knock-on atom energies (EPKA) of 10 and 20 keV at 100 K. Neither the number of residual defects nor the size distributions for both self-interstitial atom (SIA) type and vacancy type clusters were affected by the difference in the SFE. In the case of EPKA = 20 keV, the ratio of glissile SIA clusters increased as the SFE decreased, which was not expected by a prediction based on the classical dislocation theory. The trend did not change after annealing at 1100 K for 100 ps. For vacancy clusters, few stacking fault tetrahedrons (SFTs) formed before the annealing. However, lower SFEs tended to increase the SFT fraction after the annealing, where large vacancy clusters formed at considerable densities. The findings of this study can be used to characterise the defect formation process in low SFE metals such as austenitic stainless steels.  相似文献   

6.
The transition temperature obtained from recent Monte Carlo calculations for the Quartet Ising model on the fcc lattice deviated by 17% from the exact transition temperatureT c SD required by selfduality which we have proven afterwards. Here we use Monte Carlo results of the internal energy, which agree well with low- and high temperature series, to determine entropy and free energy and obtain aT c in excellent agreement (±0.1%) with the exact value. The Quartet model on the hcp lattice is shown to be selfdual too; the rapidly converging series for the fcc and the hcp lattice differ only in higher order.Guest stay  相似文献   

7.
Abstract

The structural energy differences have been calculated for zirconium as a function of pressure at zero temperature using the Andersen force theorem and the linear muffin tin orbital method. The structures included are the following: α (hcp), the room temperature room pressure phase, ω- a three atom simple hexagonal, bcc and fcc. Our calculations show that the bcc structure would become energetically most favourable above 11 GPa. This results is in agreement with well known correlation between the crystal structure and the d-electron population in transition metals at normal volume. The diamond anvil cell based high pressure x-ray diffraction experiments are in progress to verify this result.  相似文献   

8.
Starting from two cubic pieces of a MgO crystal ((3 x 3 x 3) and (5 x 5 x 5)), both containing a central oxygen atom, two clusters are simulated with the help of a DFT-LDA method. These clusters are charged in order to be equivalent to pieces of a neutral crystal. In each cluster, a neutral vacancy analogous to a F center is created by removing the central oxygen atom. Then, F + and F + + centers are simulated by removing one and two electrons. The main differences and similarities between the two sizes of clusters are studied: geometries, Mulliken charges, electronic distributions, gaps, ionisation potentials. An important result is that in any case, when a F center is simulated, the vacancy does not accept more than about one electron, the second one being spread in the rest of the cluster.Received: 17 March 2003, Published online: 12 August 2003PACS: 31.15.Ar Ab initio calculations - 36.40.Wa Charged clusters - 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters  相似文献   

9.
In this work we present a detailed investigation of native point defects energetics in cubic SiC, using state-of-the-art first principles computational method. We find that, the carbon vacancy is the dominant defect in p-type SiC, regardless the growth conditions. Silicon and carbon antisites are the most common defects in n-type material in Si-rich and C-rich conditions respectively. Interstitial defects and silicon vacancy are less favorite from the energetic point of view. The silicon vacancy tends to transform into a carbon vacancy-antisite complex and the carbon interstitial atom prefers to pair to a carbon antisite. The dumbbell structure is the lowest-energy configuration for the isolated carbon interstitial defect, and the tetrahedral interstitial silicon is a stable structure in p-type and intrinsic conditions, while in n-type material the dumbbell configuration is the stable one. Our results suggest that, in samples grown in Si-rich stoichiometric conditions, native defects are a source of n-doping and of compositional unbalance of nominally intrinsic SiC, in accord with experimental evidence.Received: 9 January 2004, Published online: 28 May 2004PACS: 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters - 68.55.Ln Defects and impurities: doping, implantation, distribution, concentration, etc. - 74.62.Dh Effects of crystal defects, doping and substitution  相似文献   

10.
以钼为代表的一系列过渡金属,在高温高压的相变及结构稳定性研究是实验和理论研究的热点.钼在常温常压下是bcc结构,但是在高温高压下可能的相结构一直未能确定.本文首先预测了几种高压下的结构,并计算了其自由能及力学性质.针对可能的hcp结构,我们通过新近发展的自洽晶格动力学方法,充分考虑声子间相互作用,成功获得了hcp结构高温高压声子色散曲线,结果表明hcp相在热力学及动力学上都是能够稳定存在的结构,是一种可能的高压相.  相似文献   

11.
Dynamics of an array of line defects interacting with a background elastic medium is studied in the linear regime. It is shown that the inertial coupling between the defects and the ambient phonons leads to an anomalous response behavior for the deformation modes of a defect-lattice, in the form of anisotropic and anomalous mass and elastic constants, resonant dissipation through excitation of phonons, and instabilities. The case of a single fluctuating line defect is also studied, and it is shown that it could lead to formation of shock waves in the elastic medium for sufficiently high frequency deformation modes.Received: 18 February 2003, Published online: 23 July 2003PACS: 63.20.Mt Phonon-defect interactions - 61.72.Bb Theories and models of crystal defects - 66.30.Lw Diffusion of other defects  相似文献   

12.
ABSTRACT

By using the six sets of interatomic potentials for face-centred cubic metals that differ in the stacking fault energy (SFE) while most of the other material parameters are kept almost identical, we conducted molecular dynamics simulations to evaluate the effects of SFE on the defect formation process through collision cascades. The simulations were performed at 100, 300 and 600?K, with a primary knock-on atom energy of 50 keV. The number of residual defects is not dependent on the SFE at all the temperatures. For clusters of self-interstitial atoms (SIAs), their clustering behaviour does not depend on the SFE, either. However, the ratio of glissile SIA clusters tends to decrease with increasing SFE. This is because perfect loops, the edges of which split into two partial dislocations with stacking fault structures between them in most cases, prefer to form at lower SFEs. The enhanced formation of glissile SIA clusters at lower SFEs can also be observed even at increased temperature. Because most large vacancy clusters have stacking fault structures, they preferentially form at lower SFE; however, it is observed only at the lowest temperature, where the mean size increases with decreasing SFE. At higher temperatures, because of their extremely low number density, the vacancy clustering behaviour does not depend on the SFEs.  相似文献   

13.
He defect properties in Sc, Y, Gd, Tb, Dy, Ho, Er and Lu were studied using first-principles calculations based on density functional theory. The results indicate that the formation energy of an interstitial He atom is smaller than that of a substitutional He atom in all hcp rare-earth metals considered. Furthermore, the tetrahedral interstitial position is more favorable than an octahedral position for He defects. The results are compared with those from bcc and fcc metals.  相似文献   

14.
15.
The solution energy of H and He in various interstitial and substitution positions in the hcp lattice of α-Ti has been calculated based on the method of electron density functional. The lowest solution energy of He corresponds to the basal octahedral position and that of H corresponds to the octahedral position (next in energy is the tetrahedral position). The calculated vibration frequencies of H in various positions are used for identification of lines in the vibration spectrum obtained by the method of neutron inelastic scattering. Taking into account these spectra, it can be concluded that hydrogen atoms occupy in the hcp lattice of Ti both the octahedral and tetrahedral positions even at 600 K. The available experimental data do not contradict the conclusion that the octahedral position is more preferable in α-Ti. The energy barriers are estimated for various diffusion paths of H and He.  相似文献   

16.
The simple embedded atom method model for hcp metals developed by Johnson has been applied to calculate the thermodynamic properties of all binary alloy systems for the eleven transition hcp metals. It has been shown that the agreement with the calculation results from Miedema thermodynamic theory and with the available experimental data is general good, but the agreement with the experimental data for the formation energy of Co-Y alloys is weak, which implies that a more better model for hcp metals is needed.Project supported by the National Natural Science Fundation  相似文献   

17.
Dou-Dou Wang  Ke-Wei Xu 《Surface science》2006,600(15):2990-2996
In this paper, anisotropy of the surface energy of 5 hcp metals Be, Hf, Ru, Ti and Y have been analyzed. The surface energies of three kinds of representative surfaces, (h 0 l), (h h l) and (h k 0) belong to [0 1 0], [] and [0 0 1] crystal band, respectively, have been calculated using the modified embedded atom method. For all 5 hcp metals, the (1 1 0) plane has the minimum surface energy in all 35 surfaces studied. Considering surface energy minimization solely, the (1 1 0) texture should be favorable in the hcp films. The fact that the short termination corresponds to much lower surface energy than long one implies the former is more stable for those surfaces having two possible terminations. Such as the prism plane (1 0 0), only the short termination was observed in experiment.  相似文献   

18.
运用卡里普索(CALYPSO)结构预测方法,在杂化密度泛函B3LYP/6-311G+(d)基组水平上,对AlnCl(n=2-14)团簇的几何结构与电子性质进行优化计算,并讨论了团簇的平均结合能、能隙、二阶能量差分、电离能、亲和能以及电子自然布局和极化率。研究结果表明:AlnCl(n=2-14)团簇的基态构型由简单平面几何结构向立体结构演化,形成Cl原子戴帽Aln-1Cl团簇结构;Cl原子的掺杂增大了Aln团簇的平均结合能;二阶能量差分、能隙、电离能、亲和能的变化表明Al7Cl是幻数团簇结构;团簇中的电荷总是由Al原子向Cl原子转移,原子之间的成键作用随着团簇尺寸的增大而增强。  相似文献   

19.
运用卡里普索(CALYPSO)结构预测方法,在杂化密度泛函B3LYP/6-311G+(d)基组水平上,对Al_nCl(n=2-14)团簇的几何结构与电子性质进行优化计算,并讨论了团簇的平均结合能、能隙、二阶能量差分、电离能、亲和能以及电子自然布居和极化率.研究结果表明:Al_nCl(n=2-14)团簇的基态构型由简单平面几何结构向立体结构演化,形成Cl原子戴帽Al_n-1Cl团簇结构;Cl原子的掺杂增大了Al_n团簇的平均结合能;二阶能量差分、能隙、电离能、亲和能的变化表明Al_7Cl是幻数团簇结构;团簇中的电荷总是由Al_原子向Cl原子转移,原子之间的成键作用随着团簇尺寸的增大而增强.  相似文献   

20.
The temperature for the long-range migration of an interstitial atom in h.c.p. metals is - when normalized to the melting temperature - observed to be a linear function of the c/a-ratio. This can be understood in terms of the relative size of open atomic lenses in the lattice. The special cases of Zn and Cd (extremal c/a-values) are tentatively explained by a crowdion mechanism for the creation and annealing of Frenkel defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号